Fuzzy α-Cut Lasso for Handling Diverse Data Types in LR-Fuzzy Outcomes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Hyoshin | - |
dc.contributor.author | Jung, Hye-Young | - |
dc.date.accessioned | 2024-09-24T05:00:19Z | - |
dc.date.available | 2024-09-24T05:00:19Z | - |
dc.date.issued | 2024-09 | - |
dc.identifier.issn | 1562-2479 | - |
dc.identifier.issn | 2199-3211 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120554 | - |
dc.description.abstract | Regularization techniques have been widely applied in the context of fuzzy regression models, primarily tailored to triangular fuzzy outcomes. While this approach effectively handles fuzzy data in explicit interval data formats, its adaptability to various data types commonly encountered in practical applications is limited. To address this gap, we introduce the new fuzzy α-cut Lasso, extending the classical Lasso to encompass two essential data formats for fuzzy outcomes: explicit interval data formats and implicit formats with multiple measurements. Leveraging α-cuts, this model can extract richer insights from the data regarding the shape of fuzzy numbers. The model shows flexibility in handling fuzzy outputs and fuzzy regression coefficients of the LR-type, encompassing specific examples such as triangular and Gaussian types. © The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. | - |
dc.format.extent | 12 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Springer Science and Business Media Deutschland GmbH | - |
dc.title | Fuzzy α-Cut Lasso for Handling Diverse Data Types in LR-Fuzzy Outcomes | - |
dc.type | Article | - |
dc.publisher.location | 독일 | - |
dc.identifier.doi | 10.1007/s40815-024-01825-w | - |
dc.identifier.scopusid | 2-s2.0-85204010935 | - |
dc.identifier.wosid | 001313660800002 | - |
dc.identifier.bibliographicCitation | International Journal of Fuzzy Systems, v.27, no.4, pp 1 - 12 | - |
dc.citation.title | International Journal of Fuzzy Systems | - |
dc.citation.volume | 27 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 12 | - |
dc.type.docType | Article; Early Access | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.subject.keywordPlus | REGRESSION-MODEL | - |
dc.subject.keywordPlus | SELECTION | - |
dc.subject.keywordAuthor | Fuzzy coefficient | - |
dc.subject.keywordAuthor | Fuzzy outcome | - |
dc.subject.keywordAuthor | Lasso | - |
dc.subject.keywordAuthor | LR-fuzzy number | - |
dc.subject.keywordAuthor | Multiple measures | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s40815-024-01825-w | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.