Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Modulating the chemo-mechanical response of structured DNA assemblies through binding molecules

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Chanseok-
dc.contributor.authorKim, Young-Joo-
dc.contributor.authorKim, Kyung Soo-
dc.contributor.authorLee, Jae Young-
dc.contributor.authorKim, Do-Nyun-
dc.date.accessioned2024-09-24T06:30:36Z-
dc.date.available2024-09-24T06:30:36Z-
dc.date.issued2021-12-
dc.identifier.issn0305-1048-
dc.identifier.issn1362-4962-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120573-
dc.description.abstractRecent advances in DNA nanotechnology led the fabrication and utilization of various DNA assemblies, but the development of a method to control their global shapes and mechanical flexibilities with high efficiency and repeatability is one of the remaining challenges for the realization of the molecular machines with on-demand functionalities. DNA-binding molecules with intercalation and groove binding modes are known to induce the perturbation on the geometrical and mechanical characteristics of DNA at the strand level, which might be effective in structured DNA assemblies as well. Here, we demonstrate that the chemo-mechanical response of DNA strands with binding ligands can change the global shape and stiffness of DNA origami nanostructures, thereby enabling the systematic modulation of them by selecting a proper ligand and its concentration. Multiple DNA-binding drugs and fluorophores were applied to straight and curved DNA origami bundles, which demonstrated a fast, recoverable, and controllable alteration of the bending persistence length and the radius of curvature of DNA nanostructures. This chemo-mechanical modulation of DNA nanostructures would provide a powerful tool for reconfigurable and dynamic actuation of DNA machineries.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherOxford University Press-
dc.titleModulating the chemo-mechanical response of structured DNA assemblies through binding molecules-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1093/nar/gkab1119-
dc.identifier.wosid000733312000044-
dc.identifier.bibliographicCitationNucleic Acids Research, v.49, no.21, pp 12591 - 12599-
dc.citation.titleNucleic Acids Research-
dc.citation.volume49-
dc.citation.number21-
dc.citation.startPage12591-
dc.citation.endPage12599-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.subject.keywordPlusSINGLE-MOLECULE-
dc.subject.keywordPlusFORCE MICROSCOPY-
dc.subject.keywordPlusFOLDING DNA-
dc.subject.keywordPlusORIGAMI-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusCOMPLEXES-
dc.subject.keywordPlusDYES-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSHAPES-
dc.identifier.urlhttps://academic.oup.com/nar/article/49/21/12591/6439683?login=true-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chanseok, Lee photo

Chanseok, Lee
ERICA 첨단융합대학 (ERICA 바이오나노공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE