Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rapid computational analysis of structured DNA assemblies at near-atomic resolution

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jae Young-
dc.contributor.authorLee, Jae Gyung-
dc.contributor.authorYun, Giseok-
dc.contributor.authorLee, Chanseok-
dc.contributor.authorKim, Young-Joo-
dc.contributor.authorKim, Kyung Soo-
dc.contributor.authorKim, Tae Hwi-
dc.contributor.authorKim, Do-Nyun-
dc.date.accessioned2024-09-24T06:31:07Z-
dc.date.available2024-09-24T06:31:07Z-
dc.date.issued2021-01-
dc.identifier.issn1936-0851-
dc.identifier.issn1936-086X-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120615-
dc.description.abstractStructural DNA nanotechnology plays an ever-increasing role in advanced biomolecular applications. Here, we present a computational method to analyze structured DNA assemblies rapidly at near-atomic resolution. Both high computational efficiency and molecular-level accuracy are achieved by developing a multiscale analysis framework. The sequence-dependent relative geometry and mechanical properties of DNA motifs are characterized by the all-atom molecular dynamics simulation and incorporated into the structural finite element model successfully without significant loss of atomic information. The proposed method can predict the three-dimensional shape, equilibrium dynamic properties, and mechanical rigidities of monomeric to hierarchically assembled DNA structures at near-atomic resolution without adjusting any model parameters. The calculation takes less than only 15 min for most origami-scale DNA nanostructures consisting of 7000-8000 base-pairs. Hence, it is expected to be highly utilized in an iterative design-analysis-revision process for structured DNA assemblies. © 2021 American Chemical Society. All rights reserved.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Chemical Society-
dc.titleRapid computational analysis of structured DNA assemblies at near-atomic resolution-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acsnano.0c07717-
dc.identifier.scopusid2-s2.0-85099664686-
dc.identifier.wosid000668597500001-
dc.identifier.bibliographicCitationACS Nano, v.15, no.1, pp 1002 - 1015-
dc.citation.titleACS Nano-
dc.citation.volume15-
dc.citation.number1-
dc.citation.startPage1002-
dc.citation.endPage1015-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSINGLE-STRANDED-DNA-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusFOLDING DNA-
dc.subject.keywordPlusSHAPES-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorDNA nanostructures-
dc.subject.keywordAuthorDNA nanotechnology-
dc.subject.keywordAuthormechanical properties-
dc.subject.keywordAuthormultiscale modeling-
dc.subject.keywordAuthorstructural analysis-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsnano.0c07717-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chanseok, Lee photo

Chanseok, Lee
ERICA 첨단융합대학 (ERICA 바이오나노공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE