Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sampling rare events using nanostructures for universal Pt neural network potential

Full metadata record
DC Field Value Language
dc.contributor.authorKang, Joonhee-
dc.contributor.authorKim, Byung-Hyun-
dc.contributor.authorSeo, Min Ho-
dc.contributor.authorLee, Jehyun-
dc.date.accessioned2024-11-21T01:00:21Z-
dc.date.available2024-11-21T01:00:21Z-
dc.date.issued2024-10-
dc.identifier.issn1567-1739-
dc.identifier.issn1878-1675-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120856-
dc.description.abstractThe density functional theory (DFT) data-driven approach to generating potential energy surfaces using machine learning has been proven to quickly and accurately predict the molecular and crystal structures of various elements. However, training databases consisting of hundreds of well-known symmetric structures have shown fatal weaknesses in calculating amorphous or nano-scale structures. Ab-initio molecular dynamics (AIMD) simulations create a training set that compensates for these shortcomings, but there are still many rare event structures. Here we introduce a new method to easily enlarge the data diversity and dramatically reduce data points based on the highly defected nano structures for universal machine learned potential. Our potential applies to bulk and nano systems and has been shown to high accuracy and computational efficiency while requiring minimal DFT training data. The developed potential is expected to help observation of structural changes in the Pt-based nano-catalysts that have been difficult to simulate at the DFT-level.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleSampling rare events using nanostructures for universal Pt neural network potential-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1016/j.cap.2024.07.005-
dc.identifier.scopusid2-s2.0-85198306873-
dc.identifier.wosid001271420900001-
dc.identifier.bibliographicCitationCurrent Applied Physics, v.66, pp 110 - 114-
dc.citation.titleCurrent Applied Physics-
dc.citation.volume66-
dc.citation.startPage110-
dc.citation.endPage114-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusComputational efficiency-
dc.subject.keywordPlusDesign for testability-
dc.subject.keywordPlusMolecular dynamics-
dc.subject.keywordPlusNanocatalysts-
dc.subject.keywordPlusNanostructures-
dc.subject.keywordPlusPotential energy-
dc.subject.keywordPlusQuantum chemistry-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1567173924001548?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Byung-Hyun photo

Kim, Byung-Hyun
ERICA 공학대학 (ERICA 에너지바이오학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE