Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

UAV-Assisted Task Offloading in Edge Computing

Full metadata record
DC Field Value Language
dc.contributor.authorZhang, Junna-
dc.contributor.authorZhang, Guoxian-
dc.contributor.authorWang, Xinxin-
dc.contributor.authorZhao, Xiaoyan-
dc.contributor.authorYuan, Peiyan-
dc.contributor.authorJin, Hu-
dc.date.accessioned2024-11-22T08:00:23Z-
dc.date.available2024-11-22T08:00:23Z-
dc.date.issued2025-03-
dc.identifier.issn2372-2541-
dc.identifier.issn2327-4662-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120863-
dc.description.abstractTask offloading can meet users' demands for the latency and energy consumption by offloading tasks from resource-constrained IoT devices to relatively resource-rich edge servers. Traditional task offloading usually makes use of fixed base stations or servers as edge servers. This would lead to limited range of services and increased costs due to large-scale deployment of edge servers. Therefore, deploying unmanned aerial vehicles (UAVs) as mobile edge servers for task offloading in complex terrains (e.g., forest, desert, etc.) is a worthwhile research problem. To this end, this paper proposes a UAV-assisted task offloading mechanism. The mechanism aims to minimize the weighted sum of latency and energy consumption through jointly optimizing resource allocation, offloading decision, and UAV trajectory. We first transform the non-convex optimization problem into convex optimization subproblems to obtain the optimal resource allocation. Second, we use an improved particle swarm optimization algorithm to find the optimal offloading decision. Finally, we present the deep determination policy gradient algorithm to optimize the UAV trajectory which is a kind of deep reinforcement learning algorithm. Through simulation experiments, we show that the proposed mechanism can efficiently reduce the weighted sum of latency and energy consumption. © 2014 IEEE.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleUAV-Assisted Task Offloading in Edge Computing-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/JIOT.2024.3488210-
dc.identifier.scopusid2-s2.0-85208368119-
dc.identifier.wosid001433294700006-
dc.identifier.bibliographicCitationIEEE Internet of Things Journal, v.12, no.5, pp 1 - 16-
dc.citation.titleIEEE Internet of Things Journal-
dc.citation.volume12-
dc.citation.number5-
dc.citation.startPage1-
dc.citation.endPage16-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthordeep determination policy gradient algorithm-
dc.subject.keywordAuthorEdge computing-
dc.subject.keywordAuthorresource allocation-
dc.subject.keywordAuthortask offloading-
dc.subject.keywordAuthorUAV trajectory-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10738404-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher JIN, HU photo

JIN, HU
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE