Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Set Packing Optimization by Evolutionary Algorithms with Theoretical Guarantees

Full metadata record
DC Field Value Language
dc.contributor.authorJin, Youzhen-
dc.contributor.authorXia, Xiaoyun-
dc.contributor.authorWang, Zijia-
dc.contributor.authorPeng, Xue-
dc.contributor.authorZhang, Jun-
dc.contributor.authorLiao, Weizhi-
dc.date.accessioned2024-12-10T07:30:24Z-
dc.date.available2024-12-10T07:30:24Z-
dc.date.issued2024-10-
dc.identifier.issn2313-7673-
dc.identifier.issn2313-7673-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/121272-
dc.description.abstractThe set packing problem is a core NP-complete combinatorial optimization problem which aims to find the maximum collection of disjoint sets from a given collection of sets, S, over a ground set, U. Evolutionary algorithms (EAs) have been widely used as general-purpose global optimization methods and have shown promising performance for the set packing problem. While most previous studies are mainly based on experimentation, there is little theoretical investigation available in this area. In this study, we analyze the approximation performance of simplified versions of EAs, specifically the (1+1) EA, for the set packing problem from a theoretical perspective. Our analysis demonstrates that the (1+1) EA can provide an approximation guarantee in solving the k-set packing problem. Additionally, we construct a problem instance and prove that the (1+1) EA beats the local search algorithm on this specific instance. This proof reveals that evolutionary algorithms can have theoretical guarantees for solving NP-hard optimization problems.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleSet Packing Optimization by Evolutionary Algorithms with Theoretical Guarantees-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/biomimetics9100586-
dc.identifier.scopusid2-s2.0-85207679417-
dc.identifier.wosid001343105400001-
dc.identifier.bibliographicCitationBiomimetics, v.9, no.10, pp 1 - 13-
dc.citation.titleBiomimetics-
dc.citation.volume9-
dc.citation.number10-
dc.citation.startPage1-
dc.citation.endPage13-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.subject.keywordPlusPARTICLE SWARM OPTIMIZATION-
dc.subject.keywordAuthorset packing-
dc.subject.keywordAuthorevolutionary algorithms-
dc.subject.keywordAuthorlocal search-
dc.subject.keywordAuthorapproximation algorithm-
dc.subject.keywordAuthorperformance guarantee-
dc.subject.keywordAuthorapproximation ratio-
dc.subject.keywordAuthorruntime analysis-
dc.identifier.urlhttps://www.mdpi.com/2313-7673/9/10/586-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE