Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Joohyun-
dc.contributor.authorLee, Kyunghan-
dc.contributor.authorHan, Choongwoo-
dc.contributor.authorKim, Taehoon-
dc.contributor.authorChong, Song-
dc.date.accessioned2021-06-22T15:44:32Z-
dc.date.available2021-06-22T15:44:32Z-
dc.date.issued2016-12-
dc.identifier.issn1520-9210-
dc.identifier.issn1941-0077-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/12189-
dc.description.abstractFrom the advancements of mobile display and network infrastructure, mobile users can enjoy high quality-mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleResource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TMM.2016.2604565-
dc.identifier.scopusid2-s2.0-85026999179-
dc.identifier.wosid000388920200017-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MULTIMEDIA, v.18, no.12, pp 2517 - 2527-
dc.citation.titleIEEE TRANSACTIONS ON MULTIMEDIA-
dc.citation.volume18-
dc.citation.number12-
dc.citation.startPage2517-
dc.citation.endPage2527-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusSCALABLE VIDEO-
dc.subject.keywordPlusALLOCATION-
dc.subject.keywordAuthorCommunication energy saving-
dc.subject.keywordAuthorMarkov decision process-
dc.subject.keywordAuthormobile video streaming-
dc.subject.keywordAuthorresource efficiency-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7556972-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Joo hyun photo

Lee, Joo hyun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE