Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Indexes-Based and Partial Restart-Based Constrained Multiobjective Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorJun Zhang-
dc.date.accessioned2025-03-06T08:00:36Z-
dc.date.available2025-03-06T08:00:36Z-
dc.date.issued2025-08-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/122225-
dc.description.abstractConstrained multiobjective optimization problems often have complex feasible regions and constrained Pareto fronts. These factors bring great challenges to current constrained multiobjective optimization evolutionary algorithms (CMOEAs). To solve this problem and further balance the objective optimization and constraint satisfaction, we propose an indexesbased and partial restart-based constrained multiobjective optimization algorithm (IRCMO). In IRCMO, a two-stage (i.e.,development and enhancement) and tri-population framework is designed. IRCMO adopts the aggregative indexes-based evaluation and adaptive collaborative partial restart strategy to assist the evolution of the first and second populations. The third population is obtained by directed sampling, which is mostlylocated at the boundary of the feasible region and enhances the exploration ability of extreme solutions. At the end of each generation, a progressive dual-archive strategy is designed to screen the solutions distributed uniformly from three populations. Experimental results demonstrate that IRCMO is superior to the other six state-of-the-art CMOEAs on several constraint benchmark suites and real-world problems.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleIndexes-Based and Partial Restart-Based Constrained Multiobjective Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TEVC.2024.3400610-
dc.identifier.scopusid2-s2.0-85193221186-
dc.identifier.wosid001545630400039-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, v.29, no.4, pp 1 - 12-
dc.citation.titleIEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION-
dc.citation.volume29-
dc.citation.number4-
dc.citation.startPage1-
dc.citation.endPage12-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusConstrained multiobjective optimization-
dc.subject.keywordPlusevolutionary algorithm-
dc.subject.keywordPlusindex-
dc.subject.keywordPluspartial restart.-
dc.subject.keywordAuthorStatistics-
dc.subject.keywordAuthorSociology-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorConvergence-
dc.subject.keywordAuthorEvolutionary computation-
dc.subject.keywordAuthorIndexes-
dc.subject.keywordAuthorCollaboration-
dc.subject.keywordAuthorConstrained multiobjective optimization-
dc.subject.keywordAuthorevolutionary algorithm-
dc.subject.keywordAuthorindex-
dc.subject.keywordAuthorpartial restart-
dc.identifier.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10530223-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE