Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Paralfetch: Fast Application Launch on Personal Computing/Communication Devices

Full metadata record
DC Field Value Language
dc.contributor.authorRyu, Junhee-
dc.contributor.authorLee, Dongeun-
dc.contributor.authorShin, Kang G.-
dc.contributor.authorKang, Kyungtae-
dc.date.accessioned2025-03-26T07:00:40Z-
dc.date.available2025-03-26T07:00:40Z-
dc.date.issued2025-04-
dc.identifier.issn1045-9219-
dc.identifier.issn1558-2183-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/122294-
dc.description.abstractParalfetch speeds up application launches on personal computing/communication devices, by means of: 1) accurate collection of launch-related disk read requests, 2) pre-scheduling of these requests to improve I/O throughput during prefetching, and 3) overlapping application execution with disk prefetching for hiding disk access time from the execution of the application. We implemented Paralfetch under Linux kernels on a desktop/laptop PC, a Raspberry Pi 3 board, and an Android smartphone. Tests with popular applications show that Paralfetch significantly reduces application launch times on flash-based drives and hard disk drives, and it outperforms GSoC Prefetch [18] and FAST [21], which are representative application prefetchers available for Linux-based systems. © 1990-2012 IEEE.-
dc.format.extent17-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Computer Society-
dc.titleParalfetch: Fast Application Launch on Personal Computing/Communication Devices-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TPDS.2024.3525337-
dc.identifier.scopusid2-s2.0-85215864512-
dc.identifier.wosid001434731700004-
dc.identifier.bibliographicCitationIEEE Transactions on Parallel and Distributed Systems, v.36, no.4, pp 616 - 632-
dc.citation.titleIEEE Transactions on Parallel and Distributed Systems-
dc.citation.volume36-
dc.citation.number4-
dc.citation.startPage616-
dc.citation.endPage632-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordAuthorApplication launch-
dc.subject.keywordAuthorApplication prefetch-
dc.subject.keywordAuthorDisk prefetch-
dc.identifier.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820072-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Kyung tae photo

Kang, Kyung tae
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE