Espresso Crema Analysis with f-AnoGAN
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Jintak | - |
dc.contributor.author | Lee, Seungeun | - |
dc.contributor.author | Kang, Kyungtae | - |
dc.date.accessioned | 2025-03-27T08:00:53Z | - |
dc.date.available | 2025-03-27T08:00:53Z | - |
dc.date.issued | 2025-02 | - |
dc.identifier.issn | 2227-7390 | - |
dc.identifier.issn | 2227-7390 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/122318 | - |
dc.description.abstract | This study proposes a system that evaluates the quality of espresso crema in real time using the deep learning-based anomaly detection model, f-AnoGAN. The system integrates mobile devices to collect sensor data during the extraction process, enabling quick adjustments for optimal results. Using the GrabCut algorithm to separate crema from the background, the detection accuracy is improved. The experimental results show an increase of 0.13 in ROC-AUC in the CIFAR-10 dataset and, in crema images, ROC-AUC improved from 0.963 to 1.000 by VAE and hyperparameter optimization, achieving the classification of optimal anomalies in the image. A Pearson correlation coefficient of 0.999 confirms the effectiveness of the system. Key contributions include hyperparameter optimization, improved f-AnoGAN performance using VAE, integration of mobile devices, and improved image preprocessing. This research demonstrates the potential of AI in the management of coffee quality. © 2025 by the authors. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
dc.title | Espresso Crema Analysis with f-AnoGAN | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.3390/math13040547 | - |
dc.identifier.scopusid | 2-s2.0-85218956460 | - |
dc.identifier.wosid | 001430415200001 | - |
dc.identifier.bibliographicCitation | Mathematics, v.13, no.4 | - |
dc.citation.title | Mathematics | - |
dc.citation.volume | 13 | - |
dc.citation.number | 4 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | QUALITY | - |
dc.subject.keywordAuthor | coffee crema | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | espresso | - |
dc.subject.keywordAuthor | f-AnoGAN | - |
dc.subject.keywordAuthor | GrabCut | - |
dc.subject.keywordAuthor | variational autoencoder | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.