Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Open-Vocabulary Multi-Object Tracking with Domain Generalized and Temporally Adaptive Features

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Run-
dc.contributor.authorZhang, Dawei-
dc.contributor.authorWang, Yanchao-
dc.contributor.authorJiang, Yunliang-
dc.contributor.authorZheng, Zhonglong-
dc.contributor.authorJeon, Sang-Woon-
dc.contributor.authorWang, Hua-
dc.date.accessioned2025-05-07T08:30:46Z-
dc.date.available2025-05-07T08:30:46Z-
dc.date.issued2025-04-
dc.identifier.issn1520-9210-
dc.identifier.issn1941-0077-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125217-
dc.description.abstractOpen-vocabulary multi-object tracking (OVMOT) is a cutting research direction within the multi-object tracking field. It employs large multi-modal models to effectively address the challenge of tracking unseen objects within dynamic visual scenes. While models require robust domain generalization and temporal adaptability, OVTrack, the only existing open-vocabulary multi-object tracker, relies solely on static appearance information and lacks these crucial adaptive capabilities. In this paper, we propose OVSORT, a new framework designed to improve domain generalization and temporal information processing. Specifically, we first propose the Adaptive Contextual Normalization (ACN) technique in OVSORT, which dynamically adjusts the feature maps based on the dataset's statistical properties, thereby fine-tuning our model's to improve domain generalization. Then, we introduce motion cues for the first time. Using our Joint Motion and Appearance Tracking (JMAT) strategy, we obtain a joint similarity measure and subsequently apply the Hungarian algorithm for data association. Finally, our Hierarchical Adaptive Feature Update (HAFU) strategy adaptively adjusts feature updates according to the current state of each trajectory, which greatly improves the utilization of temporal information. Extensive experiments on the TAO validation set and test set confirm the superiority of OVSORT, which significantly improves the handling of novel and base classes. It surpasses existing methods in terms of accuracy and generalization, setting a new state-of-the-art for OVMOT. © 1999-2012 IEEE.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleOpen-Vocabulary Multi-Object Tracking with Domain Generalized and Temporally Adaptive Features-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TMM.2025.3557619-
dc.identifier.scopusid2-s2.0-105002153417-
dc.identifier.wosid001498274900007-
dc.identifier.bibliographicCitationIEEE Transactions on Multimedia, v.27, pp 1 - 15-
dc.citation.titleIEEE Transactions on Multimedia-
dc.citation.volume27-
dc.citation.startPage1-
dc.citation.endPage15-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusVisualization-
dc.subject.keywordPlusAdaptation models-
dc.subject.keywordPlusTrajectory-
dc.subject.keywordPlusTraining-
dc.subject.keywordPlusData models-
dc.subject.keywordPlusAccuracy-
dc.subject.keywordPlusObject recognition-
dc.subject.keywordPlusHeuristic algorithms-
dc.subject.keywordPlusElectronic mail-
dc.subject.keywordPlusVocabulary-
dc.subject.keywordAuthorDomain generalization-
dc.subject.keywordAuthorDynamic visual scenes-
dc.subject.keywordAuthorOpen-vocabulary multi-object tracking-
dc.subject.keywordAuthorTemporal adaptability-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10948331-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Sang Woon photo

Jeon, Sang Woon
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE