Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Self-supervised machine learning framework for high-throughput electron microscopy

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Joodeok-
dc.contributor.authorRhee, Jinho-
dc.contributor.authorKang, Sungsu-
dc.contributor.authorJung, Mingyu-
dc.contributor.authorKim, Jihoon-
dc.contributor.authorJeon, Miji-
dc.contributor.authorPark, Junsun-
dc.contributor.authorHam, Jimin-
dc.contributor.authorKim, Byung Hyo-
dc.contributor.authorLee, Won Chul-
dc.contributor.authorRoh, Soung-Hun-
dc.contributor.authorPark, Jungwon-
dc.date.accessioned2025-05-07T08:30:59Z-
dc.date.available2025-05-07T08:30:59Z-
dc.date.issued2025-04-
dc.identifier.issn2375-2548-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125223-
dc.description.abstractTransmission electron microscopy (TEM) is a crucial analysis method in materials science and structural biology, as it offers a high spatiotemporal resolution for structural characterization and reveals structure-property relationships and structural dynamics at atomic and molecular levels. Despite technical advancements in EM, the nature of the electron beam makes the EM imaging inherently detrimental to materials even in low-dose applications. We introduce SHINE, the Self-supervised High-throughput Image denoising Neural network for Electron microscopy, accelerating minimally invasive low-dose EM of diverse material systems. SHINE uses only a single raw image dataset with intrinsic noise, which makes it suitable for limited-size datasets and eliminates the need for expensive ground-truth training datasets. We quantitatively demonstrate that SHINE overcomes the information limit in the current high-resolution TEM, in situ liquid phase TEM, time-series scanning TEM, and cryo-TEM, facilitating unambiguous high-throughput structure analysis across a broad spectrum of materials. Copyright © 2025 The Authors, some rights reserved.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Association for the Advancement of Science-
dc.titleSelf-supervised machine learning framework for high-throughput electron microscopy-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1126/sciadv.ads5552-
dc.identifier.scopusid2-s2.0-105002163507-
dc.identifier.wosid001457401500021-
dc.identifier.bibliographicCitationScience Advances , v.11, no.14, pp 1 - 12-
dc.citation.titleScience Advances-
dc.citation.volume11-
dc.citation.number14-
dc.citation.startPage1-
dc.citation.endPage12-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORK-
dc.subject.keywordPlusATOMIC-STRUCTURE-
dc.subject.keywordPlusNANOCRYSTALS-
dc.identifier.urlhttps://www.science.org/doi/10.1126/sciadv.ads5552-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Won Chul photo

Lee, Won Chul
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE