Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

안전지표 기반 물류 작업자 사고 예방을 위한 자율주행 물류로봇 위험 회피 알고리즘 개발Developing a Surrogate Safety Measure-based Risk Avoidance Algorithm of Autonomous Mobility in Logistics

Other Titles
Developing a Surrogate Safety Measure-based Risk Avoidance Algorithm of Autonomous Mobility in Logistics
Authors
오동희박누리이상재박준영
Issue Date
Mar-2025
Publisher
한국물류과학기술학회
Keywords
Autonomous Mobility Robot; Collision Avoidance Algorithm; Surrogate Safety Measure; safety Evaluation; Scheduling; 자율주행 이동 로봇; 위험행동 회피 알고리즘; 대체안전지표; 안전성 평가; 스케줄링
Citation
물류과학기술연구, v.6, no.1, pp 38 - 54
Pages
17
Indexed
KCICANDI
Journal Title
물류과학기술연구
Volume
6
Number
1
Start Page
38
End Page
54
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125374
DOI
10.23178/jlst.6.1.202503.003
ISSN
2765-2351
Abstract
자동화 이동 로봇이 작업자와 로봇 간 안전성에 대한 문제에 직면하면서 자율주행 이동 로봇(Autonomous mobility robot, AMR)이 도입되었다. 향후 더 많은 물류를 처리하기 위해 AMR 도입을 권장하려면, AMR의 효율성과 안전성을 입증할 필요가 있다. 따라서, 본 연구는 위험행동 회피 알고리즘을 개발하여 Autonomous mobility robot in logistics(AML) 도입 효과를 시뮬레이션 환경에서 분석하였으며, 현장의 크기에 따른 효율성과 안전성 지표를 제시하였다. AML은 작업자와의 충돌을 회피하기 위하여 안전성 지표 기반의 알고리즘에 따라 운영되며, 작업자의 위치와 AML의 상태에 따라 회피 우선순위를 적용하였다. 현장 크기별 운영성과 안전성 효과가 우수한 시나리오를 선별하고 스케줄링 기반의 운영 방안을 제시하였다. 연구 결과, 본 연구에서 개발한 알고리즘을 통해 상충건수와 지체시간 감소 효과를 확인하였으며, 스케줄링 기반의 운영 전략을 통해 현장의 크기가 증가하고 충전소가 많을수록 효율적임을 제시하였다. 본 연구에서 제안된 시나리오를 세분화하고 실제 데이터 기반의 스케줄링을 수행한다면 현장의 특성에 적합한 운영 전략을 마련하고 안전한 물류현장을 조성할 수 있을 것으로 기대한다.
The advent of artificial intelligence has enabled the integration of robotic technologies into logistics operations. However, conventional autonomous mobile robots present safety challenges, particularly regarding the risk of collisions with workers. To address these concerns, Autonomous Mobility Robots (AMRs) have been introduced, equipped with sensors to detect potential collisions and reroute to avoid them. Demonstrating AMR effectiveness without impeding worker movements is essential for broader adoption in logistics. This study developed a collision avoidance algorithm to analyze the impact of Autonomous Mobility Robots in logistics (AML) using a traffic simulation environment. Efficiency and safety indicators were presented and compared based on logistics site size. The AMLs operated according to the algorithm, designed to prevent collisions by adjusting the number of robots and operating hours to optimize efficiency. Priorities were determined based on worker locations and AML status. The study identified scenarios with the best safety and operational performance for each site size, proposing a scheduling-based operational strategy for AML deployment. Findings indicated that the collision avoidance algorithm reduced conflicts and delays, enhancing both safety and operational performance. Additionally, the scheduling-based strategy demonstrated its efficacy in maintaining stable and efficient operations as site size increased, and more charging stations were introduced. By refining these scenarios and applying a scheduling strategy based on real-world data, a tailored operational plan can be developed for specific logistics environments. This approach is expected to prevent accidents involving workers and improve overall efficiency, contributing to the creation of safer logistics sites.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF TRANSPORTATION AND LOGISTICS ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, June young photo

Park, June young
ERICA 공학대학 (DEPARTMENT OF TRANSPORTATION AND LOGISTICS ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE