Multi-agent reinforcement learning for a distributed multi-channel access game
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Zhongyang | - |
dc.contributor.author | Zhao, Yu | - |
dc.contributor.author | Lee, Joohyun | - |
dc.date.accessioned | 2025-07-04T06:30:35Z | - |
dc.date.available | 2025-07-04T06:30:35Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.issn | 2405-9595 | - |
dc.identifier.issn | 2405-9595 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125718 | - |
dc.description.abstract | In this work, we model multi-user distributed channel access as a game with U channels and N users, and propose the Multi-Agent Thompson Sampling (MA-TS) algorithm. It uses Bayes’ theorem to dynamically optimize action selection. This optimization aims to maximize throughput. We derive the algorithm's computational complexity as O(TNUNmax2). Simulations show that MA-TS converges to a pure strategy Nash equilibrium (PNE) and outperforms existing methods in average throughput. © 2025 The Authors | - |
dc.format.extent | 7 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Korean Institute of Communications and Information Sciences | - |
dc.title | Multi-agent reinforcement learning for a distributed multi-channel access game | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.1016/j.icte.2025.06.001 | - |
dc.identifier.scopusid | 2-s2.0-105008542427 | - |
dc.identifier.bibliographicCitation | ICT Express, pp 1 - 7 | - |
dc.citation.title | ICT Express | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 7 | - |
dc.type.docType | Article in press | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.subject.keywordAuthor | Channel access | - |
dc.subject.keywordAuthor | Game theory | - |
dc.subject.keywordAuthor | Multi-agent reinforcement learning | - |
dc.subject.keywordAuthor | Multi-armed bandit | - |
dc.identifier.url | https://www.scopus.com/pages/publications/105008542427 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.