Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Two-Level Estimation Enabled Online Congestion Control for Massive IoT Networks

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Shilun-
dc.contributor.authorLiu, Jie-
dc.contributor.authorJang, Han Seung-
dc.contributor.authorJin, Hu-
dc.date.accessioned2025-07-24T07:00:15Z-
dc.date.available2025-07-24T07:00:15Z-
dc.date.issued2025-08-
dc.identifier.issn1089-7798-
dc.identifier.issn1558-2558-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126157-
dc.description.abstractIn the massive Internet of Things (mIoT) scenario, characterized by a burst of access requests, the random access (RA) mechanism faces significant challenges in establishing radio resource control (RRC) connections. Access class barring (ACB) and Backoff are two typical control schemes. Devices first undergo the ACB check, and upon passing, transmit preambles and payloads in a contention-based manner. Failed attempts then enter the Backoff process for retransmission. Maximizing RA efficiency by collaborating these two control schemes is a critical challenge. This paper presents a performance analysis of the coexistence of ACB and Backoff and proposes an optimal control scheme. To enhance practical applicability, a Bayesian estimation-based approach is introduced. Simulation results validate the proposed algorithm’s substantial improvement in RA efficiency. © 1997-2012 IEEE.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleTwo-Level Estimation Enabled Online Congestion Control for Massive IoT Networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LCOMM.2025.3581943-
dc.identifier.scopusid2-s2.0-105010116360-
dc.identifier.wosid001550796000049-
dc.identifier.bibliographicCitationIEEE Communications Letters, v.29, no.8, pp 1968 - 1972-
dc.citation.titleIEEE Communications Letters-
dc.citation.volume29-
dc.citation.number8-
dc.citation.startPage1968-
dc.citation.endPage1972-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthorAccess class barring-
dc.subject.keywordAuthorBackoff scheme-
dc.subject.keywordAuthorBayesian estimation-
dc.subject.keywordAuthorMassive Internet of Things-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/11045939-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher JIN, HU photo

JIN, HU
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE