Two-Level Estimation Enabled Online Congestion Control for Massive IoT Networks
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Song, Shilun | - |
dc.contributor.author | Liu, Jie | - |
dc.contributor.author | Jang, Han Seung | - |
dc.contributor.author | Jin, Hu | - |
dc.date.accessioned | 2025-07-24T07:00:15Z | - |
dc.date.available | 2025-07-24T07:00:15Z | - |
dc.date.issued | 2025-08 | - |
dc.identifier.issn | 1089-7798 | - |
dc.identifier.issn | 1558-2558 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126157 | - |
dc.description.abstract | In the massive Internet of Things (mIoT) scenario, characterized by a burst of access requests, the random access (RA) mechanism faces significant challenges in establishing radio resource control (RRC) connections. Access class barring (ACB) and Backoff are two typical control schemes. Devices first undergo the ACB check, and upon passing, transmit preambles and payloads in a contention-based manner. Failed attempts then enter the Backoff process for retransmission. Maximizing RA efficiency by collaborating these two control schemes is a critical challenge. This paper presents a performance analysis of the coexistence of ACB and Backoff and proposes an optimal control scheme. To enhance practical applicability, a Bayesian estimation-based approach is introduced. Simulation results validate the proposed algorithm’s substantial improvement in RA efficiency. © 1997-2012 IEEE. | - |
dc.format.extent | 5 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Two-Level Estimation Enabled Online Congestion Control for Massive IoT Networks | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/LCOMM.2025.3581943 | - |
dc.identifier.scopusid | 2-s2.0-105010116360 | - |
dc.identifier.wosid | 001550796000049 | - |
dc.identifier.bibliographicCitation | IEEE Communications Letters, v.29, no.8, pp 1968 - 1972 | - |
dc.citation.title | IEEE Communications Letters | - |
dc.citation.volume | 29 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 1968 | - |
dc.citation.endPage | 1972 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.subject.keywordAuthor | Access class barring | - |
dc.subject.keywordAuthor | Backoff scheme | - |
dc.subject.keywordAuthor | Bayesian estimation | - |
dc.subject.keywordAuthor | Massive Internet of Things | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/11045939 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.