Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Regionally asymmetric hysteresis of western North Pacific tropical cyclone activity in a CO2 removal experimentopen access

Authors
Kim, Han-KyoungPark, Jong-YeonPark, Doo-Sun RSon, Jun-HyukYeh, Sang-WookMoon, Byung-KwonJung, Hyun-ChaeLee, Min-UkSung, Hyun MinByun, Young-HwaLee, Hyomee
Issue Date
Sep-2025
Publisher
Institute of Physics
Keywords
carbon dioxide removal; hysteresis; tropical cyclone
Citation
Environmental Research Letters , v.20, no.9, pp 1 - 11
Pages
11
Indexed
SCIE
SCOPUS
Journal Title
Environmental Research Letters
Volume
20
Number
9
Start Page
1
End Page
11
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126260
DOI
10.1088/1748-9326/adf97a
ISSN
1748-9326
1748-9326
Abstract
Tropical cyclones (TCs) are devastating natural phenomena with considerable socio-economic impacts on coastal regions worldwide. Despite their importance for climate mitigation and adaptation planning, the response of TC activity to carbon dioxide removal (CDR) has received limited attention. Here, we examine the influence of CDR on TC activity over the western North Pacific (WNP) using an Earth system model under an idealized CDR scenario. Our results show that the WNP-mean genesis potential index (GPI) does not exhibit hysteresis between the ramp-down (model years 249-279) and ramp-up (model years 0-30) periods. This lack of hysteresis is attributed to a regionally asymmetric GPI hysteresis, characterized by a west-east dipolar pattern. The dipole is primarily driven by changes in vertical wind shear associated with a weakened Walker circulation, which is in turn linked to hysteresis in El Niño-like sea surface temperature patterns. Additional simulations using a higher-resolution atmospheric model confirm these findings, revealing no significant change in the number of TCs over the WNP between the two periods. However, a notable 20.11% decrease in TC landfall frequency in East Asia is identified, attributed to reduced TC genesis over the western part of the WNP between the two periods. These results suggest that CDR could help mitigate TC-related socio-economic risks, particularly in East Asia. © 2025 The Author(s). Published by IOP Publishing Ltd.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yeh, Sang Wook photo

Yeh, Sang Wook
ERICA 공학대학 (ERICA 해양융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE