Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Balancing yield and makespan in wafer fabrication: A two-stage data-driven scheduling approach

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Min-geol-
dc.contributor.authorKim, Hyunjoon-
dc.contributor.authorBarde, Stephane R.A.-
dc.contributor.authorLee, Chang-ho-
dc.date.accessioned2025-09-11T05:00:15Z-
dc.date.available2025-09-11T05:00:15Z-
dc.date.issued2025-10-
dc.identifier.issn0278-6125-
dc.identifier.issn1878-6642-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126334-
dc.description.abstractIn semiconductor manufacturing, achieving high quality and productivity remains a challenging task due to the complexity and variability of multistage production processes. This study addresses the hybrid flow shop scheduling problem (HFSP) in wafer fabrication, targeting the inherent trade-off between quality (yield) and productivity (makespan). We propose a two-stage data-driven scheduling framework that integrates historical manufacturing data. In the first stage, sequential patterns are mined using the PrefixSpan algorithm and are statistically validated. Based on their yield, patterns are classified and recombined via rule-based filtering to derive plausible high-quality (PHQ) paths. In the second stage, the PHQ path-based HFSP is formulated and solved using GAInS, a hybrid metaheuristic framework that incorporates Genetic Algorithm (GA), Iterated Local Search, and Simulated Annealing. Computational experiments across various wafer counts (N=5,15,25,50) demonstrate that GAInS consistently outperforms Mixed Integer Linear Programming, Constraint Programming models, and basic GA approaches in minimizing makespan while maintaining high yield. Compared to an existing method in the literature that combines regression-based yield prediction with GA-based scheduling, the proposed approach achieves superior Pareto solutions by better balancing quality and productivity. These findings highlight the potential of the proposed framework in balancing critical objectives in wafer fabrication. © 2025 Elsevier B.V., All rights reserved.-
dc.format.extent31-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleBalancing yield and makespan in wafer fabrication: A two-stage data-driven scheduling approach-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.jmsy.2025.07.009-
dc.identifier.scopusid2-s2.0-105012576574-
dc.identifier.wosid001558507200001-
dc.identifier.bibliographicCitationJournal of Manufacturing Systems, v.82, pp 874 - 904-
dc.citation.titleJournal of Manufacturing Systems-
dc.citation.volume82-
dc.citation.startPage874-
dc.citation.endPage904-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusHYBRID FLOW-SHOP-
dc.subject.keywordPlusGENETIC ALGORITHM-
dc.subject.keywordPlusSETUP TIMES-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusMACHINES-
dc.subject.keywordPlusBATCH-
dc.subject.keywordAuthorHybrid Flow Shop Scheduling-
dc.subject.keywordAuthorHybrid Metaheuristic Optimization-
dc.subject.keywordAuthorProductivity-quality Trade-off-
dc.subject.keywordAuthorTwo-stage Data-driven Scheduling Methodology-
dc.subject.keywordAuthorWafer Fabrication-
dc.subject.keywordAuthorBalancing-
dc.subject.keywordAuthorConstraint Theory-
dc.subject.keywordAuthorFabrication-
dc.subject.keywordAuthorGenetic Algorithms-
dc.subject.keywordAuthorInteger Programming-
dc.subject.keywordAuthorMixed-integer Linear Programming-
dc.subject.keywordAuthorScheduling Algorithms-
dc.subject.keywordAuthorSemiconductor Device Manufacture-
dc.subject.keywordAuthorSimulated Annealing-
dc.subject.keywordAuthorData Driven-
dc.subject.keywordAuthorDriven Scheduling-
dc.subject.keywordAuthorHybrid Flow Shop Scheduling-
dc.subject.keywordAuthorHybrid Metaheuristic Optimization-
dc.subject.keywordAuthorHybrid Metaheuristics-
dc.subject.keywordAuthorMetaheuristic Optimization-
dc.subject.keywordAuthorProductivity-quality Trade-off-
dc.subject.keywordAuthorTrade Off-
dc.subject.keywordAuthorTwo-stage Data-driven Scheduling Methodology-
dc.subject.keywordAuthorWafer Fabrications-
dc.subject.keywordAuthorEconomic And Social Effects-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF INDUSTRIAL & MANAGEMENT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyunjoon photo

Kim, Hyunjoon
ERICA 공학대학 (DEPARTMENT OF INDUSTRIAL & MANAGEMENT ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE