Innovative mineral carbonation techniques: A comprehensive review of ultrasound-assisted processing, mechanistic insights, optimization strategies, and environmental impacts
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sun, Xun | - |
dc.contributor.author | Xu, Haozhen | - |
dc.contributor.author | Manickam, Sivakumar | - |
dc.contributor.author | Gupta, Rakesh Kumar | - |
dc.contributor.author | Cravotto, Giancarlo | - |
dc.contributor.author | Yoon, Joon Yong | - |
dc.contributor.author | Wang, Benlong | - |
dc.contributor.author | Wang, Wenlong | - |
dc.contributor.author | Sun, Di | - |
dc.date.accessioned | 2025-09-11T05:00:19Z | - |
dc.date.available | 2025-09-11T05:00:19Z | - |
dc.date.issued | 2025-09 | - |
dc.identifier.issn | 2772-6568 | - |
dc.identifier.issn | 2772-6568 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126337 | - |
dc.description.abstract | Worldwide efforts are focused on reducing CO2 emissions and improving CO2 capture, utilization, and sequestration. Ultrasound-assisted processing (UAP), utilizing acoustic cavitation (AC), emerges as a promising, ecofriendly technology to enhance CO2 sequestration. This overview highlights recent progress in UAP for mineral carbonation, covering intensification mechanisms, sonochemical reactors, and the impact of UAP factors (frequency, power, temperature, particle size, duration, pH). High temperatures (5000 K) and pressures (1000 atm) from AC generate hydroxyl radicals, boosting mass transfer and reaction rates while preventing passivating layer formation. These factors accelerate CO2 sequestration. UAP can increase carbonation/leaching rates by 10-40% with lower energy consumption and milder conditions than conventional methods like high-temperature reactors. However, further research is needed to improve economic efficiency and scalability, as key challenges include controlling acoustic field uniformity, ensuring consistent performance across varying mineral types, and integrating UAP with existing industrial infrastructure. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ELSEVIER | - |
dc.title | Innovative mineral carbonation techniques: A comprehensive review of ultrasound-assisted processing, mechanistic insights, optimization strategies, and environmental impacts | - |
dc.type | Article | - |
dc.publisher.location | 네델란드 | - |
dc.identifier.doi | 10.1016/j.ccst.2025.100469 | - |
dc.identifier.scopusid | 2-s2.0-105012359619 | - |
dc.identifier.wosid | 001545118000001 | - |
dc.identifier.bibliographicCitation | CARBON CAPTURE SCIENCE & TECHNOLOGY, v.16 | - |
dc.citation.title | CARBON CAPTURE SCIENCE & TECHNOLOGY | - |
dc.citation.volume | 16 | - |
dc.type.docType | Review | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | esci | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.subject.keywordPlus | CALCIUM-CARBONATE | - |
dc.subject.keywordPlus | ACCELERATED CARBONATION | - |
dc.subject.keywordPlus | CO2 SEQUESTRATION | - |
dc.subject.keywordPlus | WASTE-WATER | - |
dc.subject.keywordPlus | HYDRODYNAMIC CAVITATION | - |
dc.subject.keywordPlus | STEELMAKING SLAG | - |
dc.subject.keywordPlus | SULFURIC-ACID | - |
dc.subject.keywordPlus | PARTICLE-SIZE | - |
dc.subject.keywordPlus | STEEL SLAG | - |
dc.subject.keywordPlus | FLY-ASH | - |
dc.subject.keywordAuthor | Acoustic cavitation | - |
dc.subject.keywordAuthor | Ultrasound | - |
dc.subject.keywordAuthor | Mineral carbonation | - |
dc.subject.keywordAuthor | Carbon dioxide | - |
dc.subject.keywordAuthor | Solid waste | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.