Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Ki-Seok-
dc.contributor.authorLee, Han-Seung-
dc.date.accessioned2025-09-11T06:30:31Z-
dc.date.available2025-09-11T06:30:31Z-
dc.date.issued2025-07-
dc.identifier.issn1996-1944-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126382-
dc.description.abstractThis study investigates the synthesis of highly porous ZnCl2-activated biochars derived from sawdust through controlled pyrolysis at 300 degrees C and 500 degrees C, aiming to enhance CO2 adsorption performance. The effects of pyrolysis temperature and chemical activation on particle size distribution, surface area, and pore structure are systematically analyzed. Particle size analysis reveals that higher pyrolysis temperature and ZnCl2 activation significantly reduce both median and mean particle sizes, resulting in finer and more uniform biochar morphology. BET analysis demonstrates a substantial increase in specific surface area and micropore volume upon ZnCl2 activation, particularly at 500 degrees C, where the activated biochar (S500ZC) exhibits a high surface area of 717.60 m(2)/g and a micropore area of 616.60 m(2)/g. CO2 adsorption isotherms recorded at 25 degrees C confirm that both thermal treatment and activation markedly enhance adsorption capacity, with the highest uptake of 35.34 cm(3)/g achieved by S500ZC. The adsorption performance follows the order: S300NZC < S300ZC < S500NZC < S500ZC, closely correlating with microporosity and surface textural development. The findings highlight the potential of ZnCl2-activated biochars as cost-effective, environmentally friendly, and efficient sorbents for scalable CO2 mitigation technologies.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleSustainable Development of Sawdust Biochar as a Green and Promising Material for CO2 Capture Technologies-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/ma18143243-
dc.identifier.scopusid2-s2.0-105011619720-
dc.identifier.wosid001536748200001-
dc.identifier.bibliographicCitationMATERIALS, v.18, no.14-
dc.citation.titleMATERIALS-
dc.citation.volume18-
dc.citation.number14-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusADSORPTION PERFORMANCE-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusFTIR-
dc.subject.keywordAuthorbiochar-
dc.subject.keywordAuthorCO2 storage-
dc.subject.keywordAuthorporosity-
dc.subject.keywordAuthorBET surface area-
dc.subject.keywordAuthorcarbon capture and storage (CCS)-
dc.subject.keywordAuthorchemical activation-
dc.subject.keywordAuthormicroporosity-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN ARCHITECTURAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Han Seung photo

Lee, Han Seung
ERICA 공학대학 (MAJOR IN ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE