Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prediction of physisorption on zeolites using Graph Integrated Adsorption Network and spline data augmentation

Full metadata record
DC Field Value Language
dc.contributor.authorZhao, Peng-
dc.contributor.authorLi, Guangyao-
dc.contributor.authorYu, Hao-
dc.contributor.authorKim, Young Deuk-
dc.contributor.authorMiyazaki, Takahiko-
dc.contributor.authorThu, Kyaw-
dc.date.accessioned2025-09-17T05:00:21Z-
dc.date.available2025-09-17T05:00:21Z-
dc.date.issued2025-10-
dc.identifier.issn2451-9049-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126462-
dc.description.abstractThis paper discusses a unified application framework termed as the Graph Integrated Adsorption Network (GIANet) for predicting gas adsorption in zeolites. The proposed method utilizes limited experimental data for predicting the adsorption performance of different zeolites. A spline‐based interpolation has been adopted to densify sparse isotherm measurements. The approach reduces training epochs by over 90 % and lowers the mean squared error by roughly 96 %. With only 1,001 parameters, GIANet attains an MAE of 0.068 mmol g−1 and an R2 of 0.997 on a 20 % random hold-out set—comparable to a material-specific Toth isotherm model and similar to much larger MatErials Graph Network (MEGNet) variants. For interpolation tests on CO<inf>2</inf> and N<inf>2</inf> adsorption, mean errors remain below 0.06 mmol g−1 (RMSE ≈ 0.04, R2 > 0.99). Extrapolation experiments—unseen temperatures, cross-framework transfers, and fully held-out isotherms—yield mean errors up to 0.11 mmol g−1 and R2 ≥ 0.89. These results suggest that GIANet's lightweight, condition-aware design offers a practical balance of simplicity and predictive accuracy for adsorption screening across diverse zeolites and operating conditions. © 2025 Elsevier B.V., All rights reserved.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titlePrediction of physisorption on zeolites using Graph Integrated Adsorption Network and spline data augmentation-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.tsep.2025.104047-
dc.identifier.scopusid2-s2.0-105015043636-
dc.identifier.bibliographicCitationThermal Science and Engineering Progress, v.66-
dc.citation.titleThermal Science and Engineering Progress-
dc.citation.volume66-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorAdsorption Behavior Prediction-
dc.subject.keywordAuthorData Augmentation-
dc.subject.keywordAuthorGraph Integrated Adsorption Network-
dc.subject.keywordAuthorGraph-based Deep Learning Model-
dc.subject.keywordAuthorZeolite Structures-
dc.subject.keywordAuthorDeep Learning-
dc.subject.keywordAuthorForecasting-
dc.subject.keywordAuthorGas Adsorption-
dc.subject.keywordAuthorGraph Structures-
dc.subject.keywordAuthorGraphic Methods-
dc.subject.keywordAuthorInterpolation-
dc.subject.keywordAuthorIsotherms-
dc.subject.keywordAuthorLearning Systems-
dc.subject.keywordAuthorMean Square Error-
dc.subject.keywordAuthorPhysisorption-
dc.subject.keywordAuthorRandom Errors-
dc.subject.keywordAuthorSplines-
dc.subject.keywordAuthorAdsorption Behavior Prediction-
dc.subject.keywordAuthorAdsorption Behaviour-
dc.subject.keywordAuthorBehavior Prediction-
dc.subject.keywordAuthorData Augmentation-
dc.subject.keywordAuthorGraph Integrated Adsorption Network-
dc.subject.keywordAuthorGraph-based-
dc.subject.keywordAuthorGraph-based Deep Learning Model-
dc.subject.keywordAuthorLearning Models-
dc.subject.keywordAuthorMean Errors-
dc.subject.keywordAuthorZeolite Structure-
dc.subject.keywordAuthorZeolites-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Deuk photo

Kim, Young Deuk
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE