Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Hyun-Min | - |
dc.contributor.author | Kwon, Seung-Jun | - |
dc.contributor.author | Myung, Nosang Vincent | - |
dc.contributor.author | Singh, Jitendra Kumar | - |
dc.contributor.author | Lee, Han-Seung | - |
dc.contributor.author | Mandal, Soumen | - |
dc.date.accessioned | 2021-06-22T09:08:35Z | - |
dc.date.available | 2021-06-22T09:08:35Z | - |
dc.date.issued | 2020-01 | - |
dc.identifier.issn | 1996-1944 | - |
dc.identifier.issn | 1996-1944 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1360 | - |
dc.description.abstract | Ground granulated blast furnace slag (GGBFS) conventionally has been incorporated with ordinary Portland cement (OPC) owing to reduce the environmental load and enhance the engineering performance. Concrete with GGBFS shows different strength development of normal concrete, but sensitive, to exterior condition. Thus, a precise strength evaluation technique based on a quantitative model like full maturity model is required. Many studies have been performed on strength development of the concrete using equivalent age which is based on the apparent activation energy. In this process, it considers the effect of time and temperature simultaneously. However, the previous models on the apparent activation energy of concrete with mineral admixtures have limitation, and they have not considered the effect of temperature on strength development. In this paper, the apparent activation energy with GGBFS replacement ratio was calculated through several experiments and used to predict the compressive strength of GGBFS concrete. Concrete and mortar specimens with 0.6 water/binder ratio, and 0 to 60% GGBFS replacement were prepared. The apparent activation energy (E-a) was experimentally derived considering three different curing temperatures. Thermodynamic reactivity of GGBFS mixed concrete at different curing temperature was applied to evaluate the compressive strength model, and the experimental results were in good agreement with the model. The results show that when GGBFS replacement ratio was increased, there was a delay in compressive strength. | - |
dc.format.extent | 14 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | MDPI | - |
dc.title | Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.3390/ma13020442 | - |
dc.identifier.scopusid | 2-s2.0-85079735367 | - |
dc.identifier.wosid | 000515499900189 | - |
dc.identifier.bibliographicCitation | MATERIALS, v.13, no.2, pp 1 - 14 | - |
dc.citation.title | MATERIALS | - |
dc.citation.volume | 13 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 14 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordPlus | CEMENT HYDRATION | - |
dc.subject.keywordPlus | EARLY-AGE | - |
dc.subject.keywordPlus | MATURITY METHOD | - |
dc.subject.keywordPlus | TEMPERATURE | - |
dc.subject.keywordPlus | MORTARS | - |
dc.subject.keywordPlus | REPLACEMENT | - |
dc.subject.keywordAuthor | compressive strength | - |
dc.subject.keywordAuthor | concrete | - |
dc.subject.keywordAuthor | ground granulated blast furnace slag | - |
dc.subject.keywordAuthor | apparent activation energy | - |
dc.subject.keywordAuthor | equivalent age | - |
dc.identifier.url | https://www.mdpi.com/1996-1944/13/2/442 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.