Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Investigation of charge trapping mechanism for nanocrystal-based organic nonvolatile floating gate memory devices by band structure analysis

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Dong-Hoon-
dc.contributor.authorLim, Ki-Tae-
dc.contributor.authorPark, Eung-Kyu-
dc.contributor.authorShin, Ha-Chul-
dc.contributor.authorKim, Chung Soo-
dc.contributor.authorPark, Kee-Chan-
dc.contributor.authorAhn, Joung-Real-
dc.contributor.authorBang, Jin Ho-
dc.contributor.authorKim, Yong-Sang-
dc.date.accessioned2021-06-22T16:44:59Z-
dc.date.available2021-06-22T16:44:59Z-
dc.date.created2021-01-21-
dc.date.issued2016-05-
dc.identifier.issn1738-8090-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/13707-
dc.description.abstractThis paper investigates the charge trapping mechanism and electrical performance of CdSe nanocrystals, such as nanoparticles and nanowires in organic floating gate memory devices. Despite of same chemical component, each nanocrystals show different electrical performances with distinct trapping mechanism. CdSe nanoparticles trap holes in the memory device; on the contrary, nanowires trap electrons. This phenomenon is mainly due to the difference of energy band structures between nanoparticles and nanowires, measured by the ultraviolet photoelectron spectroscopy. Also, we investigated the memory performance with C-V characteristics, charging and discharging phenomena, and retention time. The nanoparticle based hole trapping memory device has large memory window while the nanowire based electron trapping memory shows a narrow memory window. In spite of narrow memory window, the nanowire based memory device shows better retention performance of about 55% of the charge even after 10(4) sec of charging. The contrasting performance of nanoparticle and nanowire is attributed to the difference in their energy band and the morphology of thin layer in the device.-
dc.language영어-
dc.language.isoen-
dc.publisher대한금속·재료학회-
dc.titleInvestigation of charge trapping mechanism for nanocrystal-based organic nonvolatile floating gate memory devices by band structure analysis-
dc.typeArticle-
dc.contributor.affiliatedAuthorBang, Jin Ho-
dc.identifier.doi10.1007/s13391-016-5448-z-
dc.identifier.scopusid2-s2.0-84964713803-
dc.identifier.wosid000375053100008-
dc.identifier.bibliographicCitationElectronic Materials Letters, v.12, no.3, pp.376 - 382-
dc.relation.isPartOfElectronic Materials Letters-
dc.citation.titleElectronic Materials Letters-
dc.citation.volume12-
dc.citation.number3-
dc.citation.startPage376-
dc.citation.endPage382-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002107101-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusGAP-
dc.subject.keywordAuthorNFGM-
dc.subject.keywordAuthornanocrystals-
dc.subject.keywordAuthorband structure-
dc.subject.keywordAuthorUPS-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s13391-016-5448-z-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bang, Jin Ho photo

Bang, Jin Ho
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE