Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting

Full metadata record
DC FieldValueLanguage
dc.contributor.authorInamdar, Akbar I.-
dc.contributor.authorChavan, Harish S.-
dc.contributor.authorHou, Bo-
dc.contributor.authorLee, Chi Ho-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorCha, SeungNam-
dc.contributor.authorKim, Hyungsang-
dc.contributor.authorIm, Hyunsik-
dc.date.accessioned2021-06-22T09:08:52Z-
dc.date.available2021-06-22T09:08:52Z-
dc.date.issued2020-01-
dc.identifier.issn1613-6810-
dc.identifier.issn1613-6829-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1384-
dc.description.abstractTo generate hydrogen, which is a clean energy carrier, a combination of electrolysis and renewable energy sources is desirable. In particular, for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in electrolysis, it is necessary to develop nonprecious, efficient, and durable catalysts. A robust nonprecious copper-iron (CuFe) bimetallic composite is reported that can be used as a highly efficient bifunctional catalyst for overall water splitting in an alkaline medium. The catalyst exhibits outstanding OER and HER activity, and very low OER and HER overpotentials (218 and 158 mV, respectively) are necessary to attain a current density of 10 mA cm(-2). When used in a two-electrode water electrolyzer system for overall water splitting, it not only achieves high durability (even at a very high current density of 100 mA cm(-2)) but also reduces the potential required to split water into oxygen and hydrogen at 10 mA cm(-2) to 1.64 V for 100 h of continuous operation.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleA Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/smll.201905884-
dc.identifier.scopusid2-s2.0-85075442085-
dc.identifier.wosid000498244100001-
dc.identifier.bibliographicCitationSmall, v.16, no.2, pp 1 - 11-
dc.citation.titleSmall-
dc.citation.volume16-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusLAYERED-DOUBLE-HYDROXIDE-
dc.subject.keywordPlusOXYGEN EVOLUTION REACTION-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordPlusPHOSPHIDES-
dc.subject.keywordPlusNANOSHEET-
dc.subject.keywordPlusALKALINE-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordAuthorelectrocatalysis-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthoroverall water splitting-
dc.subject.keywordAuthoroxygen evolution reaction-
dc.subject.keywordAuthorwater splitting-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/smll.201905884-
Files in This Item
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE