Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Variation in Crystalline Phases: Controlling the Selectivity between Silicon and Silicon Carbide via Magnesiothermic Reduction using Silica/Carbon Composites

Full metadata record
DC Field Value Language
dc.contributor.authorAhn, Jihoon-
dc.contributor.authorKim, Hee Soo-
dc.contributor.authorPyo, Jung-
dc.contributor.authorLee, Jin-Kyu-
dc.contributor.authorYoo, Won Cheol-
dc.date.accessioned2021-06-22T17:04:34Z-
dc.date.available2021-06-22T17:04:34Z-
dc.date.issued2016-03-
dc.identifier.issn0897-4756-
dc.identifier.issn1520-5002-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/14162-
dc.description.abstractMagnesiothermic reduction of various types of silica/carbon (SiO2/C) composites has been frequently used to synthesize silicon/carbon (Si/C) composites and silicon carbide (SiC) materials, which are of great interest in the research areas of lithium-ion batteries (LIBs) and nonmetal oxide ceramics, respectively. Up to now, however, it has not been comprehensively understood how totally different crystal phases of Si or SiC can result from the compositionally identical parent materials (SiO2/C) via magnesiothermic reduction. In this article, we propose a formation mechanism of Si and SiC by magnesiothermic reduction of SiO2/C; SiC is formed at the interface between SiO2 and carbon when silicon intermediates, mainly in situ-formed Mg2Si, encounter carbon through diffusion. Otherwise, Si is formed, which is supported by an ex situ reaction between Mg2Si and carbon nanosphere that results in SiC. In addition, the resultant crystalline phase ratio between Si and SiC can be controlled by manipulating the synthesis parameters such as the contact areas between silica and carbon of parent materials, reaction temperatures, heating rates, and amount of the reactant mixtures used. The reasons for the dependence on these synthesis parameters could be attributed to the modulated chance of an encounter between silicon intermediates and carbon, which determines the destination of silicon intermediates, namely, either thermodynamically preferred SiC or kinetic product of Si as a final product. Such a finding was applied to design and synthesize the hollow mesoporous shell (ca. 3-4 nm pore) SiC, which is particularly of interest as a catalyst support under harsh environments.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER CHEMICAL SOC-
dc.titleVariation in Crystalline Phases: Controlling the Selectivity between Silicon and Silicon Carbide via Magnesiothermic Reduction using Silica/Carbon Composites-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acs.chemmater.5b05037-
dc.identifier.scopusid2-s2.0-84960443256-
dc.identifier.wosid000371852000035-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.28, no.5, pp 1526 - 1536-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume28-
dc.citation.number5-
dc.citation.startPage1526-
dc.citation.endPage1536-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusMESOPOROUS SILICON-
dc.subject.keywordPlusREVERSIBLE STORAGE-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusMICROSPHERES-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordAuthorLITHIUM-ION BATTERIES-
dc.subject.keywordAuthorMESOPOROUS SILICON-
dc.subject.keywordAuthorORDERED MESOPOROSITY-
dc.subject.keywordAuthorREVERSIBLE STORAGE-
dc.subject.keywordAuthorANODE MATERIALS-
dc.subject.keywordAuthorENERGY-STORAGE-
dc.subject.keywordAuthorSURFACE-AREAS-
dc.subject.keywordAuthorCARBON-
dc.subject.keywordAuthorPERFORMANCE-
dc.subject.keywordAuthorPOWDER-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.chemmater.5b05037-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher yoo, won cheol photo

yoo, won cheol
ERICA 공학대학 (ERICA 에너지바이오학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE