A New Architecture of Feature Pyramid Network for Object Detection
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Yichen | - |
dc.contributor.author | Han, Jeong hoon | - |
dc.contributor.author | Kwon, Yong woo | - |
dc.contributor.author | Moon, Young shik | - |
dc.date.accessioned | 2021-06-22T09:10:08Z | - |
dc.date.available | 2021-06-22T09:10:08Z | - |
dc.date.issued | 2020-12 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1433 | - |
dc.description.abstract | In recent years, object detectors generally use the feature pyramid network (FPN) to solve the problem of scale variation in object detection. In this paper, we propose a new architecture of feature pyramid network which combines a top-down feature pyramid network and a bottom-up feature pyramid network. The main contributions of the proposed method are two-fold: (1) We design a more complex feature pyramid network to get the feature maps for object detection. (2) By combining these two architectures, we can get the feature maps with richer semantic information to solve the problem of scale variation better. The proposed method experiments on PASCAL VOC2007 dataset. Experimental results show that the proposed method can improve the accuracy of detectors using the FPN by about 1.67%. © 2020 IEEE. | - |
dc.format.extent | 5 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | A New Architecture of Feature Pyramid Network for Object Detection | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/ICCC51575.2020.9345302 | - |
dc.identifier.scopusid | 2-s2.0-85101667100 | - |
dc.identifier.bibliographicCitation | 2020 IEEE 6th International Conference on Computer and Communications, ICCC 2020, pp 1224 - 1228 | - |
dc.citation.title | 2020 IEEE 6th International Conference on Computer and Communications, ICCC 2020 | - |
dc.citation.startPage | 1224 | - |
dc.citation.endPage | 1228 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |
dc.subject.keywordPlus | Feature extraction | - |
dc.subject.keywordPlus | Object detection | - |
dc.subject.keywordPlus | Object recognition | - |
dc.subject.keywordPlus | Semantics | - |
dc.subject.keywordPlus | Bottom up | - |
dc.subject.keywordPlus | Feature map | - |
dc.subject.keywordPlus | Feature pyramid | - |
dc.subject.keywordPlus | Object detectors | - |
dc.subject.keywordPlus | Semantic information | - |
dc.subject.keywordPlus | Topdown | - |
dc.subject.keywordPlus | Network architecture | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | feature pyramid network | - |
dc.subject.keywordAuthor | object detection | - |
dc.subject.keywordAuthor | RetinaNet | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/9345302 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.