Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조

Full metadata record
DC Field Value Language
dc.contributor.author박세진-
dc.contributor.author한복규-
dc.contributor.author문영식-
dc.date.accessioned2021-06-22T09:11:19Z-
dc.date.available2021-06-22T09:11:19Z-
dc.date.issued2020-11-
dc.identifier.issn2234-4772-
dc.identifier.issn2288-4165-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1537-
dc.description.abstract컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.-
dc.description.abstractWith the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method.-
dc.format.extent8-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국정보통신학회-
dc.title효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조-
dc.title.alternativeEfficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.6109/jkiice.2020.24.11.1437-
dc.identifier.bibliographicCitation한국정보통신학회논문지, v.24, no.11, pp 1437 - 1444-
dc.citation.title한국정보통신학회논문지-
dc.citation.volume24-
dc.citation.number11-
dc.citation.startPage1437-
dc.citation.endPage1444-
dc.identifier.kciidART002648611-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthor컴퓨터 비전-
dc.subject.keywordAuthor딥러닝-
dc.subject.keywordAuthor의미적 분할-
dc.subject.keywordAuthor자율 주행-
dc.subject.keywordAuthor도로영역 인식-
dc.subject.keywordAuthorComputer vision-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorSemantic segmentation-
dc.subject.keywordAuthorAutonomous driving-
dc.subject.keywordAuthorRoad detection-
dc.identifier.urlhttps://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10494901-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE