Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jin Kyung-
dc.contributor.authorDe, Cooman Bruno C.-
dc.date.accessioned2021-06-22T18:04:49Z-
dc.date.available2021-06-22T18:04:49Z-
dc.date.created2021-01-22-
dc.date.issued2016-10-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/15626-
dc.description.abstractThe deformation mechanisms and mechanical properties of Fe-Mn-C-Al twinning-induced plasticity (TWIP) steels with a chemical composition range of 12–18 wt% Mn and 0–3 wt% Al, are reviewed. The in-depth microstructural analysis revealed that all the investigated TWIP steels exhibit deformation twinning as the main deformation mechanism in addition to dislocation glide. The Al-free TWIP steels have a much more complex deformation behavior than the Al-added TWIP steels. The deformation of Fe-15Mn-0.6C steel is accompanied by the formation of a very small amount of strain-induced ε martensite, in addition to deformation twinning. Deformation of Fe-12Mn-0.6C steel is accompanied by several deformation mechanisms which are simultaneously activated: strain-induced ε martensite, formation of shear bands and strain-induced α′ martensite, in addition to deformation twinning. The upper limit for the value of SFE for strain-induced martensitic transformation is determined to be approximately 13 mJ/m2. The results confirm that the SFE is the key parameters affecting the strength and the ductility of TWIP steel. A linear relation between the ultimate tensile strength (UTS) and the SFE is proposed, with the UTS increasing with decreasing SFE. © 2016 Elsevier B.V.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier BV-
dc.titleStacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jin Kyung-
dc.identifier.doi10.1016/j.msea.2016.08.106-
dc.identifier.scopusid2-s2.0-84984973160-
dc.identifier.wosid000384853000025-
dc.identifier.bibliographicCitationMaterials Science and Engineering: A, v.676, pp.216 - 231-
dc.relation.isPartOfMaterials Science and Engineering: A-
dc.citation.titleMaterials Science and Engineering: A-
dc.citation.volume676-
dc.citation.startPage216-
dc.citation.endPage231-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusAluminum-
dc.subject.keywordPlusDeformation-
dc.subject.keywordPlusHigh resolution transmission electron microscopy-
dc.subject.keywordPlusIron compounds-
dc.subject.keywordPlusManganese-
dc.subject.keywordPlusMartensite-
dc.subject.keywordPlusMartensitic steel-
dc.subject.keywordPlusMartensitic transformations-
dc.subject.keywordPlusMechanical properties-
dc.subject.keywordPlusStainless steel-
dc.subject.keywordPlusSteel-
dc.subject.keywordPlusTensile strength-
dc.subject.keywordPlusTransmission electron microscopy-
dc.subject.keywordPlusChemical compositions-
dc.subject.keywordPlusDeformation mechanism-
dc.subject.keywordPlusMicrostructural analysis-
dc.subject.keywordPlusStacking fault energies-
dc.subject.keywordPlusStrain induced martensitic transformation-
dc.subject.keywordPlusTwinning induced plasticity steels-
dc.subject.keywordPlusTWIP steel-
dc.subject.keywordPlusUltimate tensile strength-
dc.subject.keywordPlusPlasticity-
dc.subject.keywordAuthorDeformation-
dc.subject.keywordAuthorMartensitic transformations-
dc.subject.keywordAuthorMechanical property-
dc.subject.keywordAuthorStacking-fault energy-
dc.subject.keywordAuthorTransmission electron microscopy (TEM)-
dc.subject.keywordAuthorTWIP steel-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0921509316310309?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jin kyung photo

Kim, Jin kyung
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE