Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Real-time single image dehazing using block-to-pixel interpolation and adaptive dark channel prior

Full metadata record
DC Field Value Language
dc.contributor.authorYu, Teng-
dc.contributor.authorRiaz, Irfan-
dc.contributor.authorPiao, Jingchun-
dc.contributor.authorShin, Hyunchul-
dc.date.accessioned2021-06-22T19:22:31Z-
dc.date.available2021-06-22T19:22:31Z-
dc.date.issued2015-09-
dc.identifier.issn1751-9659-
dc.identifier.issn1751-9667-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/17410-
dc.description.abstractThe authors propose a novel and efficient method for single image dehazing. To accelerate the transmission estimation process, a block-to-pixel interpolation method is used for fine dark channel computation, in which the block-level dark channel is first computed, and then the fine pixel-level dark channel is obtained by a weighted voting of the block-level dark channel to preserve edges and smooth out texture noise. This technique can be used for a direct transmission map generation without a computationally expensive refinement step. Since the dark channel prior (DCP) is not valid in bright (sky) regions, they propose an adaptive DCP modelled by a Gaussian curve that produces a more natural recovered image of the sky and other bright regions. In addition, a scaling method for transmission map computation is proposed to further accelerate the dehazing method. Through experiments, they show that the proposed adaptive block-to-pixel technique is about 30 times faster and produces improved recovered images than the well-known state-of-the-art DCP approach.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical Engineers-
dc.titleReal-time single image dehazing using block-to-pixel interpolation and adaptive dark channel prior-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1049/iet-ipr.2015.0087-
dc.identifier.scopusid2-s2.0-84940379504-
dc.identifier.wosid000360470600001-
dc.identifier.bibliographicCitationIET Image Processing, v.9, no.9, pp 725 - 734-
dc.citation.titleIET Image Processing-
dc.citation.volume9-
dc.citation.number9-
dc.citation.startPage725-
dc.citation.endPage734-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.identifier.urlhttps://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-ipr.2015.0087-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE