Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An experimental investigation on MEDAD hybrid desalination cycle

Full metadata record
DC Field Value Language
dc.contributor.authorShahzad, Muhammad Wakil-
dc.contributor.authorKyaw Thu-
dc.contributor.authorKim, Yong-deuk-
dc.contributor.authorNg, Kim Choon-
dc.date.accessioned2021-06-22T19:42:58Z-
dc.date.available2021-06-22T19:42:58Z-
dc.date.created2021-01-21-
dc.date.issued2015-06-
dc.identifier.issn0306-2619-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/17891-
dc.description.abstractThis paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient temperature, as low as 5 degrees C in contrast to the conventional MED. The MEDAD cycle results in a quantum increase of distillate production at the same top-brine condition. Being lower than the ambient temperature for the bottom stages of hybrid cycle, ambient energy can now be scavenged by the MED processes whilst the AD cycle is powered by low temperature waste heat from exhaust or renewable sources. In this paper, we present the experiments of a 3-stage MED and MEDAD plants. These plants have been tested at assorted heat source temperatures from 15 degrees C to 70 degrees C and with portable water as a feed. All system states are monitored including the distillate production and power consumption and the measured results are expressed in terms of performance ratio (PR). It is observed that the synergetic matching of MEDAD cycle led to a quantum increase in distillate production, up to 2.5 to 3 folds vis-a-vis to a conventional MED of the same rating. (C) 2015 Elsevier Ltd. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherPergamon Press Ltd.-
dc.titleAn experimental investigation on MEDAD hybrid desalination cycle-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Yong-deuk-
dc.identifier.doi10.1016/j.apenergy.2015.03.062-
dc.identifier.scopusid2-s2.0-84961381713-
dc.identifier.wosid000355063900027-
dc.identifier.bibliographicCitationApplied Energy, v.148, pp.273 - 281-
dc.relation.isPartOfApplied Energy-
dc.citation.titleApplied Energy-
dc.citation.volume148-
dc.citation.startPage273-
dc.citation.endPage281-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusADSORPTION CHILLER-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusHEAT-
dc.subject.keywordPlusMASS-
dc.subject.keywordPlusRECOVERY-
dc.subject.keywordPlusPLANT-
dc.subject.keywordAuthorHybrid desalination-
dc.subject.keywordAuthorLow grade waste heat-
dc.subject.keywordAuthorAdsorption desalination-
dc.subject.keywordAuthorMulti-effect desalination-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0306261915003542?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Deuk photo

Kim, Young Deuk
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE