Prediction of Network Throughput using ARIMA
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Dongwon | - |
dc.contributor.author | Lee, Dongwoo | - |
dc.contributor.author | Choi, Minji | - |
dc.contributor.author | Lee, Joohyun | - |
dc.date.accessioned | 2021-06-22T09:22:02Z | - |
dc.date.available | 2021-06-22T09:22:02Z | - |
dc.date.issued | 2020-02 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1814 | - |
dc.description.abstract | In this paper, we apply an ARIMA (Autoregressive Integrated Moving Average) model to predict future network throughput, which is important in improving the network protocols in terms of latency, energy, etc. The Autoregressive Integrated Moving Average (ARIMA) model is a popular and a successful method to predict time-series data. It has wide applications in time-series analysis, including statistics and economics. We first train the model with the network throughput data using history. Then we make an estimation for the throughput in the future. We use the Mean Squared Error (MSE) as a means of error estimation and tune the parameters p, d, q, m of the ARIMA model. As a result, we obtain a forecast waveform with an average error rate of 2.84%. © 2020 IEEE. | - |
dc.format.extent | 5 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Prediction of Network Throughput using ARIMA | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/ICAIIC48513.2020.9065083 | - |
dc.identifier.scopusid | 2-s2.0-85084036744 | - |
dc.identifier.bibliographicCitation | 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020, pp 1 - 5 | - |
dc.citation.title | 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 5 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Artificial intelligence | - |
dc.subject.keywordPlus | Errors | - |
dc.subject.keywordPlus | Forecasting | - |
dc.subject.keywordPlus | Mean square error | - |
dc.subject.keywordPlus | Network protocols | - |
dc.subject.keywordPlus | Time series | - |
dc.subject.keywordPlus | Time series analysis | - |
dc.subject.keywordPlus | ARIMA modeling | - |
dc.subject.keywordPlus | Auto-regressive integrated moving average | - |
dc.subject.keywordPlus | Autoregressive integrated moving average models | - |
dc.subject.keywordPlus | Average errors | - |
dc.subject.keywordPlus | Future networks | - |
dc.subject.keywordPlus | Mean squared error | - |
dc.subject.keywordPlus | Network throughput | - |
dc.subject.keywordPlus | Time-series data | - |
dc.subject.keywordPlus | Autoregressive moving average model | - |
dc.subject.keywordAuthor | ARIMA | - |
dc.subject.keywordAuthor | Network Throughput | - |
dc.subject.keywordAuthor | Prediction | - |
dc.subject.keywordAuthor | Time series data | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/9065083/ | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.