Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prediction of Network Throughput using ARIMA

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Dongwon-
dc.contributor.authorLee, Dongwoo-
dc.contributor.authorChoi, Minji-
dc.contributor.authorLee, Joohyun-
dc.date.accessioned2021-06-22T09:22:02Z-
dc.date.available2021-06-22T09:22:02Z-
dc.date.issued2020-02-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1814-
dc.description.abstractIn this paper, we apply an ARIMA (Autoregressive Integrated Moving Average) model to predict future network throughput, which is important in improving the network protocols in terms of latency, energy, etc. The Autoregressive Integrated Moving Average (ARIMA) model is a popular and a successful method to predict time-series data. It has wide applications in time-series analysis, including statistics and economics. We first train the model with the network throughput data using history. Then we make an estimation for the throughput in the future. We use the Mean Squared Error (MSE) as a means of error estimation and tune the parameters p, d, q, m of the ARIMA model. As a result, we obtain a forecast waveform with an average error rate of 2.84%. © 2020 IEEE.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titlePrediction of Network Throughput using ARIMA-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICAIIC48513.2020.9065083-
dc.identifier.scopusid2-s2.0-85084036744-
dc.identifier.bibliographicCitation2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020, pp 1 - 5-
dc.citation.title2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020-
dc.citation.startPage1-
dc.citation.endPage5-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusArtificial intelligence-
dc.subject.keywordPlusErrors-
dc.subject.keywordPlusForecasting-
dc.subject.keywordPlusMean square error-
dc.subject.keywordPlusNetwork protocols-
dc.subject.keywordPlusTime series-
dc.subject.keywordPlusTime series analysis-
dc.subject.keywordPlusARIMA modeling-
dc.subject.keywordPlusAuto-regressive integrated moving average-
dc.subject.keywordPlusAutoregressive integrated moving average models-
dc.subject.keywordPlusAverage errors-
dc.subject.keywordPlusFuture networks-
dc.subject.keywordPlusMean squared error-
dc.subject.keywordPlusNetwork throughput-
dc.subject.keywordPlusTime-series data-
dc.subject.keywordPlusAutoregressive moving average model-
dc.subject.keywordAuthorARIMA-
dc.subject.keywordAuthorNetwork Throughput-
dc.subject.keywordAuthorPrediction-
dc.subject.keywordAuthorTime series data-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9065083/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Joo hyun photo

Lee, Joo hyun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE