Online Learning for Joint Beam Tracking and Pattern Optimization in Massive MIMO Systems
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jeong, Jongjin | - |
dc.contributor.author | Lim, Sunghoon | - |
dc.contributor.author | Song, Yujae | - |
dc.contributor.author | Jeon, Sangwoon | - |
dc.date.accessioned | 2021-06-22T09:22:07Z | - |
dc.date.available | 2021-06-22T09:22:07Z | - |
dc.date.issued | 2020-07 | - |
dc.identifier.issn | 0743-166X | - |
dc.identifier.issn | 2641-9874 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1822 | - |
dc.description.abstract | In this paper, we consider a joint beam tracking and pattern optimization problem for massive multiple input multiple output (MIMO) systems in which the base station (BS) selects a beamforming codebook and performs adaptive beam tracking taking into account the user mobility. A joint adaptation scheme is developed in a two-phase reinforcement learning framework which utilizes practical signaling and feedback information. In particular, an inner agent adjusts the transmission beam index for a given beamforming codebook based on short-term instantaneous signal-to-noise ratio (SNR) rewards. In addition, an outer agent selects the beamforming codebook based on long-term SNR rewards. Simulation results demonstrate that the proposed online learning outperforms conventional codebook-based beamforming schemes using the same number of feedback information. It is further shown that joint beam tracking and beam pattern adaptation provides a significant SNR gain compared to the beam tracking only schemes, especially as the user mobility increases. © 2020 IEEE. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Online Learning for Joint Beam Tracking and Pattern Optimization in Massive MIMO Systems | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/INFOCOM41043.2020.9155475 | - |
dc.identifier.scopusid | 2-s2.0-85090275097 | - |
dc.identifier.wosid | 000620945800078 | - |
dc.identifier.bibliographicCitation | Proceedings - IEEE INFOCOM, v.2020-July, pp 764 - 773 | - |
dc.citation.title | Proceedings - IEEE INFOCOM | - |
dc.citation.volume | 2020-July | - |
dc.citation.startPage | 764 | - |
dc.citation.endPage | 773 | - |
dc.type.docType | Conference Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Hardware & Architecture | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.subject.keywordPlus | Beamforming | - |
dc.subject.keywordPlus | E-learning | - |
dc.subject.keywordPlus | MIMO systems | - |
dc.subject.keywordPlus | Online systems | - |
dc.subject.keywordPlus | Reinforcement learning | - |
dc.subject.keywordPlus | Beam pattern | - |
dc.subject.keywordPlus | Feed back information | - |
dc.subject.keywordPlus | Joint adaptations | - |
dc.subject.keywordPlus | Massive multiple-input- multiple-output system (MIMO) | - |
dc.subject.keywordPlus | Online learning | - |
dc.subject.keywordPlus | Pattern optimization | - |
dc.subject.keywordPlus | Transmission beams | - |
dc.subject.keywordPlus | User mobility | - |
dc.subject.keywordPlus | Signal to noise ratio | - |
dc.subject.keywordAuthor | beam tracking | - |
dc.subject.keywordAuthor | massive MIMO | - |
dc.subject.keywordAuthor | mmWave | - |
dc.subject.keywordAuthor | Reinforcement learning | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/9155475?arnumber=9155475&SID=EBSCO:edseee | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.