Deep RP-CNN for Burst Signal Detection in Cognitive Radios
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seo, Dongho | - |
dc.contributor.author | Nam, Haewoon | - |
dc.date.accessioned | 2021-06-22T09:22:53Z | - |
dc.date.available | 2021-06-22T09:22:53Z | - |
dc.date.issued | 2020-09 | - |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1894 | - |
dc.description.abstract | This article proposes a convolutional neural network (CNN)-based signal detection scheme using image encoding techniques for burst signals in wireless networks. The conventional signal detection approach based on energy measurement performs poorly when detecting burst signals owing to the short signal length and relatively long sensing duration. To detect the presence of a burst signal, the proposed scheme encodes the received time-series signal into an image that is further fed to a CNN model. For image encoding techniques, recurrence plot algorithms are adopted in the proposed scheme with a CNN. In particular, the proposed scheme achieves the correct detection probability of 99% even in the presence of a short burst signal at SNR= -10 dB. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Deep RP-CNN for Burst Signal Detection in Cognitive Radios | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/ACCESS.2020.3023262 | - |
dc.identifier.scopusid | 2-s2.0-85102840976 | - |
dc.identifier.wosid | 000573017700001 | - |
dc.identifier.bibliographicCitation | IEEE Access, v.8, pp 167164 - 167171 | - |
dc.citation.title | IEEE Access | - |
dc.citation.volume | 8 | - |
dc.citation.startPage | 167164 | - |
dc.citation.endPage | 167171 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.subject.keywordPlus | WIRELESS COMMUNICATION | - |
dc.subject.keywordPlus | SPECTRUM | - |
dc.subject.keywordPlus | CLASSIFICATION | - |
dc.subject.keywordPlus | THRESHOLD | - |
dc.subject.keywordAuthor | Feature extraction | - |
dc.subject.keywordAuthor | Signal detection | - |
dc.subject.keywordAuthor | Image coding | - |
dc.subject.keywordAuthor | Energy measurement | - |
dc.subject.keywordAuthor | Detectors | - |
dc.subject.keywordAuthor | Cognitive radio | - |
dc.subject.keywordAuthor | Burst signal detection | - |
dc.subject.keywordAuthor | cognitive radio | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | recurrence plot | - |
dc.subject.keywordAuthor | energy detection | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/9194011 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.