Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Artificial Neural Network for Predicting Edge Stretchability in Hole Expansion Test With Gpa-Grade Steel

Full metadata record
DC Field Value Language
dc.contributor.authorWon, Chanhee-
dc.contributor.authorNguyen, Thong Phi-
dc.contributor.authorYoon, Jonghun-
dc.date.accessioned2021-06-22T09:22:56Z-
dc.date.available2021-06-22T09:22:56Z-
dc.date.created2021-01-21-
dc.date.issued2020-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1898-
dc.description.abstractThis paper mainly proposes an artificial neural network (ANN) model for predicting edge stretchability of GPa-grade steels, which is substantially difficult to predict due to the complex nonlinear relation among the numerous sheared edge qualities. We newly suggest the physically characterized parameters, such as material properties, deformed shape, and work hardening of sheared edge, to predict the various materials and punching methods, simultaneously. The proposed parameters are trained with the pre-damage strain which is calculated by inherent fracture strain and experimental results in terms of hole expansion ratio. To prevent the overfitting issues, cross validation method with additional datasets from a different kind of edge stretchability test such as sheared edge tensioning test are utilized. Experimental validations have been conducted with various GPa-grade steels and sheared edge conditions, which are compared with the proposed ANN model and numerical simulation. The proposed ANN model exhibits remarkable performance in the prediction of hole expansion ratio having a mean absolute error of 1.5% when compared to the previous studies such as numerical simulation and ANN model with utilizing the maximum hardness measured at the sheared edge.-
dc.language영어-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectSHEARED-EDGE-
dc.subjectPUNCHING PIN-
dc.subjectSIMULATION-
dc.subjectCLEARANCE-
dc.subjectFRACTURE-
dc.subjectCRACKING-
dc.subjectFAILURE-
dc.subjectANGLE-
dc.subjectWEAR-
dc.titleArtificial Neural Network for Predicting Edge Stretchability in Hole Expansion Test With Gpa-Grade Steel-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Jonghun-
dc.identifier.doi10.1109/ACCESS.2020.3033429-
dc.identifier.scopusid2-s2.0-85102898608-
dc.identifier.wosid000587868400001-
dc.identifier.bibliographicCitationIEEE ACCESS, v.8, pp.195622 - 195631-
dc.relation.isPartOfIEEE ACCESS-
dc.citation.titleIEEE ACCESS-
dc.citation.volume8-
dc.citation.startPage195622-
dc.citation.endPage195631-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusSHEARED-EDGE-
dc.subject.keywordPlusPUNCHING PIN-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusCLEARANCE-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusCRACKING-
dc.subject.keywordPlusFAILURE-
dc.subject.keywordPlusANGLE-
dc.subject.keywordPlusWEAR-
dc.subject.keywordAuthorArtificial neural network-
dc.subject.keywordAuthoredge cracking-
dc.subject.keywordAuthoredge stretchability-
dc.subject.keywordAuthorGPa-grade steels-
dc.subject.keywordAuthorsheared edge quality-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Jong hun photo

Yoon, Jong hun
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE