Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Arrhythmia detection using amplitude difference features based on random forest

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Juyoung-
dc.contributor.authorLee, Seunghan-
dc.contributor.authorKang, Kyungtae-
dc.date.accessioned2021-06-22T21:25:21Z-
dc.date.available2021-06-22T21:25:21Z-
dc.date.issued2015-08-
dc.identifier.issn1094-687X-
dc.identifier.issn1558-4615-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/20249-
dc.description.abstractA number of promising studies have been proposed for diagnosing arrhythmia, using classification techniques based on a variety of heartbeat features by the interpretation of electrocardiogram (ECG). In this study, a new feature called amplitude difference was investigated using the random forest classifier. Evaluations conducted against the MIT-BIH arrhythmia database before and after adding the amplitude difference features obtained heartbeat classification accuracies of 98.51% and 98.68%, respectively. To validate the significance of the increased performance, the Wilcoxon signed rank test was extensively employed. By the absolute preponderance of plus ranks, we confirmed that applying an amplitude difference feature for heartbeat classification improves their performance. © 2015 IEEE.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleArrhythmia detection using amplitude difference features based on random forest-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/EMBC.2015.7319561-
dc.identifier.scopusid2-s2.0-84953322800-
dc.identifier.wosid000371717205114-
dc.identifier.bibliographicCitationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp 5191 - 5194-
dc.citation.titleProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS-
dc.citation.startPage5191-
dc.citation.endPage5194-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusalgorithm-
dc.subject.keywordPlusArrhythmias, Cardiac-
dc.subject.keywordPluselectrocardiography-
dc.subject.keywordPlusheart rate-
dc.subject.keywordPlushuman-
dc.subject.keywordPlusphysiology-
dc.subject.keywordPlussignal processing-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusArrhythmias, Cardiac-
dc.subject.keywordPlusElectrocardiography-
dc.subject.keywordPlusHeart Rate-
dc.subject.keywordPlusHumans-
dc.subject.keywordPlusSignal Processing, Computer-Assisted-
dc.subject.keywordAuthorHeart beat-
dc.subject.keywordAuthorElectrocardiography-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorAccuracy-
dc.subject.keywordAuthorDatabases-
dc.subject.keywordAuthorSensitivity-
dc.subject.keywordAuthorNeural networks-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/7319561/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Kyung tae photo

Kang, Kyung tae
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE