Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

TOPTRAC: Topical trajectory pattern mining

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Younghoon-
dc.contributor.authorHan, Jiawei-
dc.contributor.authorYuan, Cangzhou-
dc.date.accessioned2021-06-22T21:43:30Z-
dc.date.available2021-06-22T21:43:30Z-
dc.date.issued2015-08-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/20619-
dc.description.abstractWith the increasing use of GPS-enabled mobile phones, geotagging, which refers to adding GPS information to media such as micro-blogging messages or photos, has seen a surge in popularity recently. This enables us to not only browse information based on locations, but also discover patterns in the location-based behaviors of users. Many techniques have been developed to find the patterns of people's movements using GPS data, but latent topics in text messages posted with local contexts have not been utilized effectively. In this paper, we present a latent topic-based clustering algorithm to discover patterns in the trajectories of geo-tagged text messages. We propose a novel probabilistic model to capture the semantic regions where people post messages with a coherent topic as well as the patterns of movement between the semantic regions. Based on the model, we develop an efficient inference algorithm to calculate model parameters. By exploiting the estimated model, we next devise a clustering algorithm to find the significant movement patterns that appear frequently in data. Our experiments on real-life data sets show that the proposed algorithm finds diverse and interesting trajectory patterns and identifies the semantic regions in a finer granularity than the traditional geographical clustering methods. © 2015 ACM.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherAssociation for Computing Machinery-
dc.titleTOPTRAC: Topical trajectory pattern mining-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1145/2783258.2783342-
dc.identifier.scopusid2-s2.0-84954092128-
dc.identifier.wosid000485312900063-
dc.identifier.bibliographicCitationProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, v.2015-Augus, pp 587 - 596-
dc.citation.titleProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-
dc.citation.volume2015-Augus-
dc.citation.startPage587-
dc.citation.endPage596-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science-
dc.relation.journalWebOfScienceCategoryArtificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science,Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusAlgorithms-
dc.subject.keywordPlusData mining-
dc.subject.keywordPlusGeographical regions-
dc.subject.keywordPlusInference engines-
dc.subject.keywordPlusSemantics-
dc.subject.keywordPlusTrajectories-
dc.subject.keywordPlusEstimated model-
dc.subject.keywordPlusGeographical clustering-
dc.subject.keywordPlusInference algorithm-
dc.subject.keywordPlusModel parameters-
dc.subject.keywordPlusMovement pattern-
dc.subject.keywordPlusProbabilistic modeling-
dc.subject.keywordPlusReal life datasets-
dc.subject.keywordPlusTrajectory pattern-
dc.subject.keywordPlusClustering algorithms-
dc.subject.keywordAuthorModeling geo-tagged messages-
dc.subject.keywordAuthorTopical trajectory pattern-
dc.identifier.urlhttps://dl.acm.org/doi/10.1145/2783258.2783342-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young hoon photo

Kim, Young hoon
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE