Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

HisCoM-PAGE: Hierarchical Structural Component Models for Pathway Analysis of Gene Expression Data

Full metadata record
DC Field Value Language
dc.contributor.authorMok, Lydia-
dc.contributor.authorKim, Yongkang-
dc.contributor.authorLee, Sungyoung-
dc.contributor.authorChoi, Sungkyoung-
dc.contributor.authorLee, Seungyeoun-
dc.contributor.authorJang, Jin-Young-
dc.contributor.authorPark, Taesung-
dc.date.accessioned2021-06-22T09:25:48Z-
dc.date.available2021-06-22T09:25:48Z-
dc.date.issued2019-11-
dc.identifier.issn2073-4425-
dc.identifier.issn2073-4425-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2067-
dc.description.abstractAlthough there have been several analyses for identifying cancer-associated pathways, based on gene expression data, most of these are based on single pathway analyses, and thus do not consider correlations between pathways. In this paper, we propose a hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE), which accounts for the hierarchical structure of genes and pathways, as well as the correlations among pathways. Specifically, HisCoM-PAGE focuses on the survival phenotype and identifies its associated pathways. Moreover, its application to real biological data analysis of pancreatic cancer data demonstrated that HisCoM-PAGE could successfully identify pathways associated with pancreatic cancer prognosis. Simulation studies comparing the performance of HisCoM-PAGE with other competing methods such as Gene Set Enrichment Analysis (GSEA), Global Test, and Wald-type Test showed HisCoM-PAGE to have the highest power to detect causal pathways in most simulation scenarios.-
dc.format.extent17-
dc.language영어-
dc.language.isoENG-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleHisCoM-PAGE: Hierarchical Structural Component Models for Pathway Analysis of Gene Expression Data-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/genes10110931-
dc.identifier.scopusid2-s2.0-85075113873-
dc.identifier.wosid000502296000097-
dc.identifier.bibliographicCitationGenes, v.10, no.11, pp 1 - 17-
dc.citation.titleGenes-
dc.citation.volume10-
dc.citation.number11-
dc.citation.startPage1-
dc.citation.endPage17-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaGenetics & Heredity-
dc.relation.journalWebOfScienceCategoryGenetics & Heredity-
dc.subject.keywordPlusPANCREATIC DUCTAL ADENOCARCINOMA-
dc.subject.keywordPlusTGF-BETA-
dc.subject.keywordPlusTESTING ASSOCIATION-
dc.subject.keywordPlusMICROARRAY DATA-
dc.subject.keywordPlusCANCER-
dc.subject.keywordPlusSURVIVAL-
dc.subject.keywordPlusINVASION-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusPREDICTOR-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordAuthorpathway analysis-
dc.subject.keywordAuthorsurvival phenotype-
dc.subject.keywordAuthorHierarchical structured component model-
dc.identifier.urlhttps://www.mdpi.com/2073-4425/10/11/931-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 수리데이터사이언스학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Sung kyoung photo

Choi, Sung kyoung
ERICA 소프트웨어융합대학 (ERICA 수리데이터사이언스학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE