Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yousaf, Abid Mehmood | - |
dc.contributor.author | Kim, Dong Wuk | - |
dc.contributor.author | Oh, Yu-Kyoung | - |
dc.contributor.author | Yong, Chul Soon | - |
dc.contributor.author | Kim, Jong Oh | - |
dc.contributor.author | Choi, Han-Gon | - |
dc.date.accessioned | 2021-06-22T21:45:20Z | - |
dc.date.available | 2021-06-22T21:45:20Z | - |
dc.date.issued | 2015-03 | - |
dc.identifier.issn | 1176-9114 | - |
dc.identifier.issn | 1178-2013 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/20684 | - |
dc.description.abstract | Background: The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods: The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) nano-corpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-beta-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results: Among the tested carriers, PVP, HP-beta-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-beta-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-beta-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (similar to 5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion: Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. | - |
dc.format.extent | 12 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | DOVE MEDICAL PRESS LTD | - |
dc.title | Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation | - |
dc.type | Article | - |
dc.publisher.location | 뉴질랜드 | - |
dc.identifier.doi | 10.2147/IJN.S78895 | - |
dc.identifier.scopusid | 2-s2.0-84924300016 | - |
dc.identifier.wosid | 000350606100005 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF NANOMEDICINE, v.10, no.1, pp 1819 - 1830 | - |
dc.citation.title | INTERNATIONAL JOURNAL OF NANOMEDICINE | - |
dc.citation.volume | 10 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1819 | - |
dc.citation.endPage | 1830 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Pharmacology & Pharmacy | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Pharmacology & Pharmacy | - |
dc.subject.keywordPlus | SPRAY-DRYING TECHNIQUE | - |
dc.subject.keywordPlus | DIFFERENTIAL SCANNING CALORIMETRY | - |
dc.subject.keywordPlus | LOADED GELATIN MICROCAPSULE | - |
dc.subject.keywordPlus | SOLID-PHASE EXTRACTION | - |
dc.subject.keywordPlus | SODIUM LAURYL SULFATE | - |
dc.subject.keywordPlus | WATER-SOLUBLE DRUG | - |
dc.subject.keywordPlus | DISSOLUTION-RATE | - |
dc.subject.keywordPlus | MICRONIZED FENOFIBRATE | - |
dc.subject.keywordPlus | PHARMACEUTICAL APPLICATIONS | - |
dc.subject.keywordPlus | SUPERCRITICAL ANTISOLVENT | - |
dc.subject.keywordAuthor | gelatin nanocapsules | - |
dc.subject.keywordAuthor | hydrophilic polymeric matrix | - |
dc.subject.keywordAuthor | crystallinity | - |
dc.subject.keywordAuthor | ameliorated oral bioavailability | - |
dc.identifier.url | https://www.dovepress.com/enhanced-oral-bioavailability-of-fenofibrate-using-polymeric-nanoparti-peer-reviewed-fulltext-article-IJN | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.