Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Demand Response for Home Energy Management Using Reinforcement Learning and Artificial Neural Network

Full metadata record
DC Field Value Language
dc.contributor.authorLu, Renzhi-
dc.contributor.authorHong, Seung Ho-
dc.contributor.authorYu, Mengmeng-
dc.date.accessioned2021-06-22T09:25:53Z-
dc.date.available2021-06-22T09:25:53Z-
dc.date.issued2019-11-
dc.identifier.issn1949-3053-
dc.identifier.issn1949-3061-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2073-
dc.description.abstractEver-changing variables in the electricity market require energy management systems (EMSs) to make optimal real-time decisions adaptively. Demand response (DR) is the latest approach being used to accelerate the efficiency and stability of power systems. This paper proposes an hour-ahead DR algorithm for home EMSs. To deal with the uncertainty in future prices, a steady price prediction model based on artificial neural network is presented. In cooperation with forecasted future prices, multi-agent reinforcement learning is adopted to make optimal decisions for different home appliances in a decentralized manner. To verify the performance of the proposed energy management scheme, simulations are conducted with non-shiftable, shiftable, and controllable loads. Experimental results demonstrate that the proposed DR algorithm can handle energy management for multiple appliances, minimize user energy bills, and dissatisfaction costs, and help the user to significantly reduce its electricity cost compared with a benchmark without DR.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDemand Response for Home Energy Management Using Reinforcement Learning and Artificial Neural Network-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TSG.2019.2909266-
dc.identifier.scopusid2-s2.0-85073707145-
dc.identifier.wosid000507947800068-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON SMART GRID, v.10, no.6, pp 6629 - 6639-
dc.citation.titleIEEE TRANSACTIONS ON SMART GRID-
dc.citation.volume10-
dc.citation.number6-
dc.citation.startPage6629-
dc.citation.endPage6639-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorreinforcement learning-
dc.subject.keywordAuthorartificial neural network-
dc.subject.keywordAuthordemand response-
dc.subject.keywordAuthorhome energy management-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8681422/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE