Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jung, Dae Soo | - |
dc.contributor.author | Bang, Jiwon | - |
dc.contributor.author | Park, Tae Wan | - |
dc.contributor.author | Lee, Seung Hyup | - |
dc.contributor.author | Jung, Yun Kyung | - |
dc.contributor.author | Byun, Myunghwan | - |
dc.contributor.author | Cho, Young-Rae | - |
dc.contributor.author | Kim, Kwang Ho | - |
dc.contributor.author | Seong, Gi Hun | - |
dc.contributor.author | Park, Woon Ik | - |
dc.date.accessioned | 2021-06-22T09:25:58Z | - |
dc.date.available | 2021-06-22T09:25:58Z | - |
dc.date.issued | 2019-10 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.issn | 2040-3372 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2082 | - |
dc.description.abstract | The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (chi) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials. Here, we introduce a novel and useful self-assembly method of di-BCP blends capable of generating diverse hybrid nanostructures consisting of oxide and metal materials through the rapid microphase separation of A-B/B-C BCP blends. We successfully obtained various hybridized BCP morphologies which cannot be acquired from a single di-BCP, such as hexagonally arranged hybrid dot and dot-in-hole patterns by controlling the mixing ratios of the solvents with a binary solvent annealing process. Furthermore, we demonstrate how the binary solvent vapor annealing process can provide a wide range of pattern geometries to di-BCP blends, showing a well-defined spontaneous one-to-one accommodation in dot-in-hole nanostructures. Specifically, we show clearly how the self-assembled BCPs can be functionalized via selective reduction and/or an oxidation process, resulting in the excellent positioning of confined silica nanodots into each nanospace of a Pt mesh. These results suggest a new method to achieve the pattern formation of more diverse and complex hybrid nanostructures using various blended BCPs. | - |
dc.format.extent | 9 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1039/c9nr04038b | - |
dc.identifier.scopusid | 2-s2.0-85073487702 | - |
dc.identifier.wosid | 000490991700039 | - |
dc.identifier.bibliographicCitation | NANOSCALE, v.11, no.40, pp 18559 - 18567 | - |
dc.citation.title | NANOSCALE | - |
dc.citation.volume | 11 | - |
dc.citation.number | 40 | - |
dc.citation.startPage | 18559 | - |
dc.citation.endPage | 18567 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | LITHOGRAPHY | - |
dc.subject.keywordPlus | GRAPHOEPITAXY | - |
dc.subject.keywordPlus | POLYMERS | - |
dc.subject.keywordPlus | ROUTE | - |
dc.identifier.url | https://pubs.rsc.org/en/content/articlelanding/2019/NR/C9NR04038B | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.