Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Jae-Won-
dc.contributor.authorNam, Yoon-Ho-
dc.contributor.authorPark, Min-Joon-
dc.contributor.authorShin, Sun-Mi-
dc.contributor.authorWehrspohn, Ralf B.-
dc.contributor.authorLee, Jung-Ho-
dc.date.accessioned2021-06-22T22:01:54Z-
dc.date.available2021-06-22T22:01:54Z-
dc.date.issued2015-04-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/21004-
dc.description.abstractMetal-assisted chemical etching is useful and cost-efficient for nanostructuring the surface of crystalline silicon solar cells. We have found that the nanoscale epitaxy of silicon occurs, upon subsequent annealing, at the Al2O3/Si interface amorphized by metal-assisted etching. Since this epitaxial growth penetrates into the pre-formed Al2O3 film, the bonding nature at the newly formed interfaces (by the regrown epitaxy) is deteriorated, resulting in a poor performance of Al2O3 passivation. Compared to the conventional hydrogen (H-) passivation, hydroxyl functionalization by oxygen plasma treatment was more effective as the wafer became thinner. For ultrathin (similar to 50 mm) wafers, similar to 30% depression in surface recombination velocity led to the improvement of similar to 15.6% in the short circuit current. The effectiveness of hydroxyl passivation validated by ultrathin wafers would be beneficial for further reducing the wafer cost of nanostructured silicon solar cells.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherRoyal Society of Chemistry-
dc.titleHydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1039/c5ra03775a-
dc.identifier.scopusid2-s2.0-84929222743-
dc.identifier.wosid000354201500043-
dc.identifier.bibliographicCitationRSC Advances, v.5, no.49, pp 39177 - 39181-
dc.citation.titleRSC Advances-
dc.citation.volume5-
dc.citation.number49-
dc.citation.startPage39177-
dc.citation.endPage39181-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusSI(111) SURFACES-
dc.subject.keywordPlusSI SURFACES-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusFABRICATION-
dc.identifier.urlhttps://pubs.rsc.org/en/content/articlelanding/2015/RA/C5RA03775A-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jung-Ho photo

Lee, Jung-Ho
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE