Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Demand Response Energy Management Scheme for Industrial Facilities in Smart Grid

Full metadata record
DC Field Value Language
dc.contributor.authorDing, Yue Min-
dc.contributor.authorHong, Seung Ho-
dc.contributor.authorLi, Xiao Hui-
dc.date.accessioned2021-06-22T22:22:47Z-
dc.date.available2021-06-22T22:22:47Z-
dc.date.issued2014-11-
dc.identifier.issn1551-3203-
dc.identifier.issn1941-0050-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/21492-
dc.description.abstractDemand response (DR) smart grid technology provides an opportunity for electricity consumers to actively participate in the management of power systems. Industry is one of the major consumers of electric power. In this study, we propose a DR energy management scheme for industrial facilities based on the state task network (STN) and mixed integer linear programming (MILP). The scheme divides the processing tasks in industrial facilities into nonschedulable tasks (NSTs) and schedulable tasks (STs), and takes advantage of distributed energy resources (DERs) to implement DR. Based on day-ahead hourly electricity prices, the scheme determines the scheduling of STs and DERs in order to shift the demand from peak periods (with high electricity prices) to offpeak periods (with low electricity prices), which not only improves the reliability of the electric power system, but also reduces energy costs for industrial facilities.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleA Demand Response Energy Management Scheme for Industrial Facilities in Smart Grid-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TII.2014.2330995-
dc.identifier.scopusid2-s2.0-84910105945-
dc.identifier.wosid000344995800027-
dc.identifier.bibliographicCitationIEEE Transactions on Industrial Informatics, v.10, no.4, pp 2257 - 2269-
dc.citation.titleIEEE Transactions on Industrial Informatics-
dc.citation.volume10-
dc.citation.number4-
dc.citation.startPage2257-
dc.citation.endPage2269-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.subject.keywordPlusMULTIPURPOSE BATCH PLANTS-
dc.subject.keywordPlusFORMULATION-
dc.subject.keywordPlusOPERATIONS-
dc.subject.keywordPlusPOWER-
dc.subject.keywordAuthorDemand response (DR)-
dc.subject.keywordAuthorfactory facilities-
dc.subject.keywordAuthormixed integer linear programming (MILP)-
dc.subject.keywordAuthorsmart grid-
dc.subject.keywordAuthorstate task network (STN)-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6834773-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE