Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of Hypoxia-Inducible Factor-1 alpha and Vascular Endothelial Growth Factor Signaling

Full metadata record
DC Field Value Language
dc.contributor.authorGiannarelli, Chiara-
dc.contributor.authorAlique, Matilde-
dc.contributor.authorRodriguez, David T.-
dc.contributor.authorYang, Dong Kwon-
dc.contributor.authorJeong, Dongtak-
dc.contributor.authorCalcagno, Claudia-
dc.contributor.authorHutter, Randolph-
dc.contributor.authorMillon, Antoine-
dc.contributor.authorKovacic, Jason C.-
dc.contributor.authorWeber, Thomas-
dc.contributor.authorFaries, Peter L.-
dc.contributor.authorSoff, Gerald A.-
dc.contributor.authorFayad, Zahi A.-
dc.contributor.authorHajjar, Roger J.-
dc.contributor.authorFuster, Valentin-
dc.contributor.authorBadimon, Juan J.-
dc.date.accessioned2021-06-22T22:24:03Z-
dc.date.available2021-06-22T22:24:03Z-
dc.date.issued2014-10-
dc.identifier.issn0009-7322-
dc.identifier.issn1524-4539-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/21540-
dc.description.abstractBackground-Alternatively spliced tissue factor (asTF) is a novel isoform of full-length tissue factor, which exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. Methods and Results-Carotid (n=10) and coronary (n=8) specimens from patients with stable or unstable angina were classified as complicated or uncomplicated on the basis of plaque morphology. Analysis of asTF expression and cell type-specific expression revealed a strong expression and colocalization of asTF with macrophages and neovessels within complicated, but not uncomplicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via hypoxia-inducible factor-1 alpha upregulation through integrins and activation of phosphatidylinositol-3-kinase/Akt and mitogen-activated protein kinase pathways. Hypoxia-inducible factor-1 alpha upregulation by asTF also was associated with increased vascular endothelial growth factor expression in primary human endothelial cells, and vascular endothelial growth factor-Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization after carotid wire injury in ApoE(-/-) mice. Conclusions-The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Here, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the hypoxia-inducible factor-1/vascular endothelial growth factor signaling. This mechanism may be relevant to neovascularization and the progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated versus uncomplicated human carotid and coronary plaques.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherLIPPINCOTT WILLIAMS & WILKINS-
dc.titleAlternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of Hypoxia-Inducible Factor-1 alpha and Vascular Endothelial Growth Factor Signaling-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1161/CIRCULATIONAHA.114.006614-
dc.identifier.scopusid2-s2.0-84927690073-
dc.identifier.wosid000343113800014-
dc.identifier.bibliographicCitationCIRCULATION, v.130, no.15, pp 1274 - 1286-
dc.citation.titleCIRCULATION-
dc.citation.volume130-
dc.citation.number15-
dc.citation.startPage1274-
dc.citation.endPage1286-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaCardiovascular System & Cardiology-
dc.relation.journalWebOfScienceCategoryCardiac & Cardiovascular Systems-
dc.relation.journalWebOfScienceCategoryPeripheral Vascular Disease-
dc.subject.keywordPlusACUTE CORONARY SYNDROMES-
dc.subject.keywordPlusAMERICAN-HEART-ASSOCIATION-
dc.subject.keywordPlusINTRAPLAQUE HEMORRHAGE-
dc.subject.keywordPlusTUMOR ANGIOGENESIS-
dc.subject.keywordPlusARTERY-DISEASE-
dc.subject.keywordPlusATHEROSCLEROTIC LESIONS-
dc.subject.keywordPlusCANCER PROGRESSION-
dc.subject.keywordPlusRISK-FACTORS-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusCOAGULATION-
dc.subject.keywordAuthoralternative splicing-
dc.subject.keywordAuthoratherosclerosis-
dc.subject.keywordAuthorhypoxia-inducible factor 1-
dc.subject.keywordAuthorneovascularization, physiologic procoagulant, tissue factor-
dc.subject.keywordAuthorthromboplastin-
dc.subject.keywordAuthorvascular endothelial growth factors-
dc.identifier.urlhttps://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.114.006614-
Files in This Item
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > ERICA 의약생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Dong tak photo

Jeong, Dong tak
ERICA 첨단융합대학 (ERICA 분자의약전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE