Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Yielding and Photolabile Approaches for Covalent Attachment of Biomolecules to Surfaces via Hydrazone Chemistry

Authors
Lee, Ju HunDomaille, Dylan W.Noh, HyunwooOh, TaeseokChoi, ChulminJin, SunghoCha, Jennifer N.
Issue Date
Jul-2014
Publisher
American Chemical Society
Citation
Langmuir, v.30, no.28, pp.8452 - 8460
Indexed
SCIE
SCOPUS
Journal Title
Langmuir
Volume
30
Number
28
Start Page
8452
End Page
8460
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/22356
DOI
10.1021/la500744s
ISSN
0743-7463
Abstract
The development of strategies to couple biomolecules covalently to surfaces is necessary for constructing sensing arrays for biological and biomedical applications. One attractive conjugation reaction is hydrazone formation - the reaction of a hydrazine with an aldehyde or ketone - as both hydrazines and aldehydes/ketones are largely bioorthogonal, which makes this particular reaction suitable for conjugating biomolecules to a variety of substrates. We show that the mild reaction conditions afforded by hydrazone conjugation enable the conjugation of DNA and proteins to the substrate surface in significantly higher yields than can be achieved with traditional bioconjugation techniques, such as maleimide chemistry. Next, we designed and synthesized a photocaged aryl ketone that can be conjugated to a surface and photochemically activated to provide a suitable partner for subsequent hydrazone formation between the surface-anchored ketone and DNA- or protein-hydrazines. Finally, we exploit the latent functionality of the photocaged ketone and pattern multiple biomolecules on the same substrate, effectively demonstrating a strategy for designing substrates with well-defined domains of different biomolecules. We expect that this approach can be extended to the production of multiplexed assays by using an appropriate mask with sequential photoexposure and biomolecule conjugation steps. © 2014 American Chemical Society.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ju Hun photo

Lee, Ju Hun
ERICA 공학대학 (DEPARTMENT OF BIONANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE