Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Minsik-
dc.contributor.authorPark, Jiwoong-
dc.contributor.authorChang, Hyung Jin-
dc.contributor.authorLee, Kyuewang-
dc.contributor.authorJChoi, in Young-
dc.date.accessioned2021-06-22T09:41:52Z-
dc.date.available2021-06-22T09:41:52Z-
dc.date.issued2019-10-
dc.identifier.issn1550-5499-
dc.identifier.issn2380-7504-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2291-
dc.description.abstractWe propose a symmetric graph convolutional autoencoder which produces a low-dimensional latent representation from a graph. In contrast to the existing graph autoencoders with asymmetric decoder parts, the proposed autoencoder has a newly designed decoder which builds a completely symmetric autoencoder form. For the reconstruction of node features, the decoder is designed based on Laplacian sharpening as the counterpart of Laplacian smoothing of the encoder, which allows utilizing the graph structure in the whole processes of the proposed autoencoder architecture. In order to prevent the numerical instability of the network caused by the Laplacian sharpening introduction, we further propose a new numerically stable form of the Laplacian sharpening by incorporating the signed graphs. In addition, a new cost function which finds a latent representation and a latent affinity matrix simultaneously is devised to boost the performance of image clustering tasks. The experimental results on clustering, link prediction and visualization tasks strongly support that the proposed model is stable and outperforms various state-of-the-art algorithms.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleSymmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICCV.2019.00662-
dc.identifier.scopusid2-s2.0-85081936980-
dc.identifier.wosid000548549201064-
dc.identifier.bibliographicCitation2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), v.2019-Octob, pp 6519 - 6528-
dc.citation.title2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019)-
dc.citation.volume2019-Octob-
dc.citation.startPage6519-
dc.citation.endPage6528-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9010004/authors#authors-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Min sik photo

Lee, Min sik
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE