Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Unsupervised 3D Reconstruction Networks

Full metadata record
DC Field Value Language
dc.contributor.authorCha, Ceonho-
dc.contributor.authorLee, Minsik-
dc.contributor.authorOh, Songhwai-
dc.date.accessioned2021-06-22T09:41:52Z-
dc.date.available2021-06-22T09:41:52Z-
dc.date.issued2019-10-
dc.identifier.issn1550-5499-
dc.identifier.issn2380-7504-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2292-
dc.description.abstractIn this paper, we propose 3D unsupervised reconstruction networks (3D-URN), which reconstruct the 3D structures of instances in a given object category from their 2D feature points under an orthographic camera model. 3D-URN consists of a 3D shape reconstructor and a rotation estimator, which are trained in a fully-unsupervised manner incorporating the proposed unsupervised loss functions. The role of the 3D shape reconstructor is to reconstruct the 3D shape of an instance from its 2D feature points, and the rotation estimator infers the camera pose. After training, 3D-URN can infer the 3D structure of an unseen instance in the same category, which is not possible in the conventional schemes of non-rigid structure from motion and structure from category. The experimental result shows the state-of-the-art performance, which demonstrates the effectiveness of the proposed method.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-
dc.titleUnsupervised 3D Reconstruction Networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ICCV.2019.00395-
dc.identifier.scopusid2-s2.0-85081923163-
dc.identifier.wosid000531438103100-
dc.identifier.bibliographicCitation2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), pp 3848 - 3857-
dc.citation.title2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019)-
dc.citation.startPage3848-
dc.citation.endPage3857-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9010628?arnumber=9010628&SID=EBSCO:edseee-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Min sik photo

Lee, Min sik
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE