Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Cross-shore variation of water surface elevation and velocity during bore propagation

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Kwang-Ho-
dc.contributor.authorShin, Sungwon-
dc.contributor.authorKim, Do-Sam-
dc.date.accessioned2021-06-22T23:44:27Z-
dc.date.available2021-06-22T23:44:27Z-
dc.date.issued2014-04-
dc.identifier.issn0749-0208-
dc.identifier.issn1551-5036-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/23320-
dc.description.abstractIn this study, we have investigated the hydrodynamics of a turbulent bore generated by removing a gate suddenly with water impounded on one side. This bore generation method was referred to a general dam-break problem. In order to perform the numerical simulation of the bore formation and propagation, we considered the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface between the two fluids (air and water) was tracked by the volume-of-fluid (VOF) technique, and the M-type Cubic Interpolated Propagation (MCIP) scheme was used to solve the Navier-Stokes equations. It is known that the MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. A Large Eddy Simulation (LES) closure scheme, which is a cost-effective approach to turbulence simulation, was employed to predict the evolution of quantities associated with turbulence. In order to verify the applicability of this numerical model to the bore simulation, the simulation results were compared to the laboratory experimental data. The numerical model for the bore formation and propagation based on the two-phase fully nonlinear Navier-Stokes equations was well verified by comparing with the analytic model based on the fully nonlinear shallow water wave equations and the laboratory experimental results.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherCoastal Education & Research Foundation, Inc.-
dc.titleCross-shore variation of water surface elevation and velocity during bore propagation-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.2112/SI70-090.1-
dc.identifier.scopusid2-s2.0-84952322341-
dc.identifier.wosid000338176100091-
dc.identifier.bibliographicCitationJournal of Coastal Research, no.sp. 70, pp 533 - 538-
dc.citation.titleJournal of Coastal Research-
dc.citation.numbersp. 70-
dc.citation.startPage533-
dc.citation.endPage538-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaPhysical Geography-
dc.relation.journalResearchAreaGeology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryGeography, Physical-
dc.relation.journalWebOfScienceCategoryGeosciences, Multidisciplinary-
dc.subject.keywordPlusSAINT-VENANT EQUATIONS-
dc.subject.keywordPlusDAM-BREAK FLOW-
dc.subject.keywordPlusNUMERICAL-SIMULATION-
dc.subject.keywordPlusINCOMPRESSIBLE-FLOW-
dc.subject.keywordPlusWAVES-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordPlusVOLUME-
dc.subject.keywordPlusSPACE-
dc.subject.keywordPlusFLUID-
dc.subject.keywordAuthorbore-
dc.subject.keywordAuthortwo-phase flow-
dc.subject.keywordAuthorMCIP method-
dc.subject.keywordAuthorNavier-Stokes equation-
dc.subject.keywordAuthormean flow velocity variation-
dc.subject.keywordAuthornon-hydrostatic pressure-
dc.identifier.urlhttps://www.jstor.org/stable/43291008#metadata_info_tab_contents-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Sungwon photo

Shin, Sungwon
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE