Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Jingqing | - |
dc.contributor.author | Landry, Markita P. | - |
dc.contributor.author | Barone, Paul W. | - |
dc.contributor.author | Kim, Jong-Ho | - |
dc.contributor.author | Lin, Shangchao | - |
dc.contributor.author | Ulissi, Zachary W. | - |
dc.contributor.author | Lin, Dahua | - |
dc.contributor.author | Mu, Bin | - |
dc.contributor.author | Boghossian, Ardemis A. | - |
dc.contributor.author | Hilmer, Andrew J. | - |
dc.contributor.author | Rwei, Alina | - |
dc.contributor.author | Hinckley, Allison C. | - |
dc.contributor.author | Kruss, Sebastian | - |
dc.contributor.author | Shandell, Mia A. | - |
dc.contributor.author | Nair, Nitish | - |
dc.contributor.author | Blake, Steven | - |
dc.contributor.author | Sen, Fatih | - |
dc.contributor.author | Sen, Selda | - |
dc.contributor.author | Croy, Robert G. | - |
dc.contributor.author | Li, Deyu | - |
dc.contributor.author | Yum, Kyungsuk | - |
dc.contributor.author | Ahn, Jin-Ho | - |
dc.contributor.author | Jin, Hong | - |
dc.contributor.author | Heller, Daniel A. | - |
dc.contributor.author | Essigmann, John M. | - |
dc.contributor.author | Blankschtein, Daniel | - |
dc.contributor.author | Strano, Michael S. | - |
dc.date.accessioned | 2021-06-23T02:02:45Z | - |
dc.date.available | 2021-06-23T02:02:45Z | - |
dc.date.issued | 2013-12 | - |
dc.identifier.issn | 1748-3387 | - |
dc.identifier.issn | 1748-3395 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/26272 | - |
dc.description.abstract | Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Nature Publishing Group | - |
dc.title | Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1038/NNANO.2013.236 | - |
dc.identifier.scopusid | 2-s2.0-84890446448 | - |
dc.identifier.wosid | 000327943400026 | - |
dc.identifier.bibliographicCitation | Nature Nanotechnology, v.8, no.12, pp 959 - 968 | - |
dc.citation.title | Nature Nanotechnology | - |
dc.citation.volume | 8 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 959 | - |
dc.citation.endPage | 968 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | RIBOFLAVIN CARRIER PROTEIN | - |
dc.subject.keywordPlus | BAND-GAP FLUORESCENCE | - |
dc.subject.keywordPlus | SINGLE | - |
dc.subject.keywordPlus | SENSORS | - |
dc.subject.keywordPlus | FUNCTIONALIZATION | - |
dc.subject.keywordPlus | SPECIFICITY | - |
dc.subject.keywordPlus | DISPERSION | - |
dc.subject.keywordPlus | GLUCOSE | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordAuthor | FUNCTIONALIZATION | - |
dc.subject.keywordAuthor | BAND-GAP FLUORESCENCE | - |
dc.subject.keywordAuthor | RIBOFLAVIN CARRIER PROTEIN | - |
dc.subject.keywordAuthor | SINGLE | - |
dc.subject.keywordAuthor | ANTIBODY-BASED SENSORS | - |
dc.subject.keywordAuthor | SPECIFICITY | - |
dc.subject.keywordAuthor | OPTICAL SENSORS | - |
dc.subject.keywordAuthor | SURFACTANTS | - |
dc.subject.keywordAuthor | MICROARRAYS | - |
dc.subject.keywordAuthor | SIMULATION | - |
dc.identifier.url | https://www.nature.com/articles/nnano.2013.236 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.