Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrochemical migration of Ag nanoink patterns controlled by atmospheric-pressure plasma

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Kwang-Seok-
dc.contributor.authorKwon, Young-Tae-
dc.contributor.authorChoa, Yong-Ho-
dc.contributor.authorJung, Seung-Boo-
dc.date.accessioned2021-06-23T03:21:54Z-
dc.date.available2021-06-23T03:21:54Z-
dc.date.created2021-01-21-
dc.date.issued2013-06-
dc.identifier.issn0167-9317-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/27941-
dc.description.abstractHighly contrasting surface energies were induced on polyimide (PI) substrates using atmospheric-pressure plasma (APP) to allow precise printing of Ag electrodes that showed mitigated electrochemical migration (ECM). The substrate surface was made uniformly hydrophobic via APP tetraethyl orthosilicate (TEOS) polymerization. Selected areas were then made hydrophilic via oxygen APP applied through a patterned metal mask. Ag nanoink was then inkjet-printed onto the hydrophilic portions and sintered for 30 min at various temperatures ranging from 100 to 250 degrees C. The resulting Ag patterned electrodes were of the desired dimensions and showed sharp edges. The Ag ECM dendrites deposited at the cathode took ca. 39% longer than in similar patterns printed on pristine substrates. The contrasting surface-energies induced by the plasma allowed precise control of the Ag electrodes' edges, which led to reduce ECM. (c) 2013 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier BV-
dc.titleElectrochemical migration of Ag nanoink patterns controlled by atmospheric-pressure plasma-
dc.typeArticle-
dc.contributor.affiliatedAuthorChoa, Yong-Ho-
dc.identifier.doi10.1016/j.mee.2013.01.041-
dc.identifier.scopusid2-s2.0-84874910043-
dc.identifier.wosid000319545500005-
dc.identifier.bibliographicCitationMicroelectronic Engineering, v.106, pp.27 - 32-
dc.relation.isPartOfMicroelectronic Engineering-
dc.citation.titleMicroelectronic Engineering-
dc.citation.volume106-
dc.citation.startPage27-
dc.citation.endPage32-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaOptics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusINKJET-
dc.subject.keywordPlusLINES-
dc.subject.keywordAuthorElectrochemical migration (ECM)-
dc.subject.keywordAuthorDendritic growth-
dc.subject.keywordAuthorAtmospheric-pressure plasma-
dc.subject.keywordAuthorSilver nanoink-
dc.subject.keywordAuthorInkjet printing-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0167931713000701?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOA, YONG HO photo

CHOA, YONG HO
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE