관절 좌표 추정을 위한 다중 학습 방법
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이호경 | - |
dc.contributor.author | 한정훈 | - |
dc.contributor.author | 조용채 | - |
dc.contributor.author | 문영식 | - |
dc.date.accessioned | 2021-06-22T10:02:04Z | - |
dc.date.available | 2021-06-22T10:02:04Z | - |
dc.date.issued | 2019-06 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2872 | - |
dc.description.abstract | In the field of human pose estimation, lack of dataset has always been a solid problem. Many research tried to overcome this issue by applying additional information such as depth information, body part segmentation, etc. In this paper, we focus on the effects of various information which are keypoint, silhouette and body part segmentation. By analyzing each cases, we propose an optimized network for human pose estimation. | - |
dc.format.extent | 3 | - |
dc.language | 한국어 | - |
dc.language.iso | KOR | - |
dc.publisher | 대한전자공학회 | - |
dc.title | 관절 좌표 추정을 위한 다중 학습 방법 | - |
dc.title.alternative | Multi-Stage learning for human pose estimation | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.bibliographicCitation | 2019년 대한전자공학회 하계학술대회 논문집, pp 653 - 655 | - |
dc.citation.title | 2019년 대한전자공학회 하계학술대회 논문집 | - |
dc.citation.startPage | 653 | - |
dc.citation.endPage | 655 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |
dc.identifier.url | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE08761999 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.