Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sintering behavior of bimodal iron nanopowder agglomerates

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Jun-ll-
dc.contributor.authorLee, Geon-Yong-
dc.contributor.authorHong, Eui-Jin-
dc.contributor.authorLee, Sunyong Caroline-
dc.contributor.authorLee, Jai-Sung-
dc.date.accessioned2021-06-22T10:02:07Z-
dc.date.available2021-06-22T10:02:07Z-
dc.date.created2021-01-21-
dc.date.issued2019-06-
dc.identifier.issn0002-7820-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2877-
dc.description.abstractThe most important issue in the processing of nanoscale metal powders is whether the metal nanopowder can be fully consolidated into ultra-fine- or nano-grained powder metallurgy parts by pressureless sintering. This paper focuses on the sintering behavior of bimodal iron (Fe) nanopowder agglomerates by considering their microstructure and densification kinetics. During the sintering, bimodal Fe nanopowder compacts underwent discontinuous shrinkage behavior until they neared full density. Three contributions to the sintering mechanisms, asymmetric sintering, densification enhancement, and grain growth inhibition, are presented in relation to the effect of bimodal nanopowder structure. Smaller nanoparticles in the bimodal nanopowders, which are predominantly present at the boundaries and interstitial spaces of larger nanoparticles, are responsible for the three mechanisms stated above. This result is strongly supported by the apparent activation energy values ranging from 48.2 to 90.6kJ/mol, which correspond to the energy for grain-boundary diffusion in Fe. The experimental results of this study show that bimodal nanopowder agglomerates can be used to produce full density nano-grained powder metallurgical parts by pressureless sintering.-
dc.language영어-
dc.language.isoen-
dc.publisherAmerican Ceramic Society-
dc.titleSintering behavior of bimodal iron nanopowder agglomerates-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Sunyong Caroline-
dc.identifier.doi10.1111/jace.16240-
dc.identifier.scopusid2-s2.0-85058706998-
dc.identifier.wosid000465347700074-
dc.identifier.bibliographicCitationJournal of the American Ceramic Society, v.102, no.6, pp.3791 - 3801-
dc.relation.isPartOfJournal of the American Ceramic Society-
dc.citation.titleJournal of the American Ceramic Society-
dc.citation.volume102-
dc.citation.number6-
dc.citation.startPage3791-
dc.citation.endPage3801-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Ceramics-
dc.subject.keywordPlusGRAIN-BOUNDARY DIFFUSION-
dc.subject.keywordPlusGAMMA-FE-NI-
dc.subject.keywordPlusMICROSTRUCTURAL DEVELOPMENT-
dc.subject.keywordPlusPARTICLE REARRANGEMENT-
dc.subject.keywordPlusPOWDER MIXTURES-
dc.subject.keywordPlusCONSOLIDATION-
dc.subject.keywordPlusDENSIFICATION-
dc.subject.keywordPlusSIZE-
dc.subject.keywordAuthoractivation energy-
dc.subject.keywordAuthorbimodal Fe nanopowder agglomerate-
dc.subject.keywordAuthordensification-
dc.subject.keywordAuthormicrostructural development-
dc.identifier.urlhttps://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.16240-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sunyong Caroline photo

Lee, Sunyong Caroline
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE